PENUGONDA, Dt. 26-08-2008.

From:

Ch. Venkateswara Rao, M. Sc.

Chairman,

Board of Studies Mathematics (U.G) &

Principal,

S.V.K.P. & Dr. K.S. RAJU ARTS & SCIENCE COLLEGE,

PENUGONDA - 534 320.

To The Registrar, Andhra University, VISAKHAPATNAM

Respected Sir,

ed Sec

These are the Recommended Problems for Practicals Paper-I

for 1st Year B. Sc.,/B.A., students admitted current academic year 2008-'09.

Thanking You Sir,

Yours sincerely,

(CH. VENKATESWARA RAO)

Chairman Board of Studies in

Mathematics (U.G.)

Encl:-1. One Set of Practical Problems (160) containing 11 Sheets

1 3/88/08.

Recommended Problems for Practical

UNIT - A

1. Solve
$$y^2 dx + (x^2 - xy - y^2) dy = 0 \left(-\frac{1}{mx + ny} \right)$$
 is IF)

2. Solve
$$(x^2 - 3xy + 2y^2)dx + x(3x - 2y) dy = 0$$
 $(\frac{1}{mx + ny})$ is IF)

3. Solve
$$(x^2 y^2 + xy + 1) dx + (x^2 y^2 - xy + 1)x dx = 0$$
 $(\frac{1}{mx - ny})$ is 1F)

4. Solve
$$(xy^2 - 3y) dx - (3x^2y + 7x) dy = 0$$
 $(\frac{1}{mx - ny})$ is 1F)

5. Solve
$$(1 + y + x^2y)dx + (x + x^3)dy = 0$$
 (e^{f(x)} is IF)

6. Solve
$$(4xy + 3y^2 - x)dx + (x^2 - 2xy)dy = 0$$
 (e^{f (x)} is 1F)

7. Solve
$$(y^4 + 2y)dx - (xy^3 + 2y^2 - 4x)dy = 0$$
 (e^{f g(y)} is IF)

8. Solve
$$(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$$
 (e^(zy) is 1F).

9. Solve
$$\frac{dx}{dy} = \frac{dy}{yz} = \frac{dz}{x(yz - 2x)}$$
 (Method of Grouping)

10. Solve
$$\frac{dx}{x z(z^2 + xy)} = \frac{dy}{-yz(z^2 + xy)} = \frac{dz}{z^4}$$
 (Method of Grouping)

11. Solve
$$\frac{dx}{x(x+y)} = \frac{dy}{-y(x+y)} = \frac{dz}{-(x+y)(2x+2y+z)}$$
 (Method of multiplies)

12. Solve
$$\frac{dx}{y^3x - 2x^4} = \frac{dy}{2y^4 - x^3y} = \frac{dz}{9z(x^3 - y^2)}$$
 (Method of multiplies)

13. Solve
$$x^2 \left(\frac{dy}{dx}\right)^2 - 2xy \frac{dy}{dx} + 2y^2 - x^2 = 0$$
 (Solvable for p)

14. Solve
$$p^2 + 2py Cotx = y^2$$
 (Solvable for p).

15. Solve
$$y = 2px - p^2$$
 (Solvable for y)

16. Solve
$$y^2 \log y = xpy + p^2$$
 (Solvable for y)

17. Solve
$$yp^2 - 2xp - y = 0$$
 (Solvable for x)

18. Solve
$$p^2 - 4xyp - 8y^2 = 0$$
 (Solvable for x)

19. Solve
$$(py + x) (px - y) = 2P$$
 (Clairaut's)

20. Solve
$$y = px + \sqrt{a^2 p^2 + b^2}$$
 (Clairaut's)

(P.T.O.)

Salver (1 22) - 2-10-3-14, 25/470-0 (final) 22

Solve boxxxx3000 y (xxxx) = 0 (tinear)

23

24. Solve x Cosx
$$\frac{dy}{dx}$$
 + (x Sinx + Cosx) = 1 (Linear)

25. Solve
$$\frac{dy}{dx} + \frac{y}{(1-x^2)^{3/2}} = \frac{x + \sqrt{1-x^2}}{(1-x^2)^2}$$
 (Linear)

26. Solve
$$x \frac{dy}{dx} + y = y^2 \log x$$
 (Bernouli)

27. Solve
$$(x + 1) \frac{dy}{dx} + 1 = e^{xy}$$
 (Bernouli) also find the solution for which $y(0) = 0$

28. Solve
$$(x^2 + 3x + 2) \frac{dy}{dx} + (2x - 1)y = (xy + 2y)^2$$
 (Bernouli)

- Find the Corthogonal trajectories of the Jamily of curses Togo, I Where Civithe Parameter.
- 30. Find the Corthogonal trajectories of the family of curves 243 + 7 = 2/3 Where C, is the pasameter.

32 · Solve
$$[D^2 - 4D + 3] y = Sin 3x$$
; Cos 2x

33 · Solve
$$[D^2 + a^2]y = Tan ax$$

34 · Solve (D² + 3D - 4)
$$y = x^2 - 2x$$

35. Solve
$$(D^2 - 4D + 4)y = x^2 + c^4 + Cos2x$$

37. Solve
$$(x^*ix^* - 2xi) - (x^*iy - x^*iog x^*(riom ogeneous linear))$$

38. Solve [
$$(3x + 2)^2 D^2 + 3(3x + 2)D - 36$$
] $y = 3x^2 + 4x + 1$ (legenders)

39. Solve
$$(x^2D^2 + 3xD + 1)y = \frac{1}{(1-x)^2}$$
 (legenders)

Solve the D.E. by the merhod of undetermined coefficients

40. Solve
$$(D^2 + 2D + 5)$$
 y = $12e^x - 3y$ Sin 2x (Rule I)

$$41$$
 Solve (D² - 2D + 3)y = x^3 + Sin x (Rule I)

$$42 \cdot \text{Solve} (D^2 - 3D + 2)y = 2x^2 + 3e^{2x} \text{ (Rule II)}$$

43. Solve
$$(D^2 - 3D + 2)y = x^2e^x + Sin x$$
 (Rule II)

$$45$$
 Solve (D² + 4D + 4)y = 3x e^{2x} (Rule III)

46. By changing the dependent variable of I derivative
$$x y^{11} + 2 (x + 1) y^{1} + (x - 2)y = (x - 2) e^{2x}$$

47 Solve
$$y^{11} - 4xy^{1} + 4x^{2}y = e^{x^{2}}$$
 (Normal form)

48. Solve
$$y^{11} - 4xy + (4x^2 - 1)y = -3e^{x^2} \sin 2x$$
 (Normal form)

49 Solve (Sinx - Cos x)
$$y^{11}$$
 - (x Sin x) y^{1} - y Sinx = 0
given that y = Sin x is a solution

50. Solve (x D² - D - 4x³)
$$y = x^5$$
 (x>0) (Changing the independent variable)

Solve
$$(x D^2 - D - 4x^3)y = 8 x^3 \sin x^2$$
 (Changing the independent variable)

52. Solve
$$(D^2 - 3D + 2)y = Cos(e^{-x})$$
 by using the method of variation of parameters

 $53 \cdot \text{Solve}(D^2 + a^2) y = \text{Sec ax by using the method of variation of parameters}$

54 Solve
$$(D-1)x + (D-1)y = 0$$
, $(2D+2)x + (2D-2)y = t$, where $D = \frac{d}{dt}$

55 · Solve (D + 3)x + (D + 1)y =
$$e^{t}$$
 (D+1)x + (D - 1)y = t, where D = $\frac{d}{dt}$

56 Solve
$$3(3D+1)x + 4y = t$$
, $Dx + Dy = t - 1$ (Triangular system)

57 Solve
$$(D+1)x + (D+1)y = 1, D^2x - Dy = t-1$$

58. Solve
$$\frac{dy}{dx} + y = z + e^x$$
, $\frac{dz}{dx} + z = y + e^x$

UNIT-C

- Find the bisecting plane of the acute angle between the planes 3x-2y+6z+2=0, -2x+y-2z-2=0.
- 2 Find the equation of the plane through the line of the intersection of the planes x-3y+2z=0 and 3x-y-2z-5=0 and passing through (1,1,1)
- Find the equation of the plane through the line of intersection of the planes x+y+z=1 and 2x+3y+z=-4 and is parallel to X-axis
- Find the equation of the planes bisecting the angles between the planes x+2y+2z=19,4x-3y+12z+3=0 and specify the one which bisects the acute angle.
- 5. Find the equation of the planes bisecting the angles between the planes 3x-6y+2z+5=0,4x-12y+3z-3=0 and specify the one, which bisects the obtuse angle.
- 6. Find the equations of planes that bisect the angles between the planes 2x-y-2z+3=0,3x-2y-6z-8=0 and specify the plane which contains the origin.
- 7. Find the equations of planes that bisect the angles between the planes x-2y+2z+1=0,2x+3y-6z-1=0 and specify the plane which contains the origin.

--

8. Show that the origin lies in the acute angle between the planes x+2y+2z=9,4x-3y+12z+13=0

given lines

lines

Find length and equation of S.D. between the lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$,

 $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ also find the equations and points in which the S.D. meets the given

Find the length and equation of line of S.D. between the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$,

$$x+y+2z-3=0,2x+3y+3z-4=0$$

12. Show the equation to the plane containing the line $\frac{y}{b} + \frac{z}{c} = 1, x = 0$ and parallel to

the line $\frac{x}{a} - \frac{z}{c} = 1$, y = 0 is $\frac{x}{a} - \frac{y}{b} - \frac{z}{c} + 1 = 0$ and if "2d" is S.D. prove that

$$\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$$

13. Find the length and equation of line of S.D. between the lines 3x-

14. Find the length and equation of line of S.D. between the lines

$$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}, \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$$

Y

- 15. Find the length and equation of line of S.D. between the lines 5x-y-z=0=x-2y+z+3 and 7x-4y-2z=0=x-y+z-3
- 16. Find the length and equation of line of S.D. between the lines $\frac{x}{4} = \frac{y+1}{3} = \frac{z-2}{2}$, 5x-2y-3z+6=0=x-3y+2z-3
- 17. Find the equation of the sphere passing, through the circle $x^2+y^2+z^2+2x+3y+6=0, x-2y+4z-9=0 \text{ and through the center of the sphere } x^2+y^2+z^2-2x+4y-6z+5=0.$
- 18. Find the equation of the sphere which passes through the circle $x^2+y^2+z^2=5, x+2y+3z=3$ and touching the plane 4x+3y=15.
- Find the equation of the sphere which has the circle $x^2+y^2+z^2-x+z-2=0,x+2y-z-4=0$ as the great circle.
 - 20. Find the equation of the sphere with center on the plane 4x-5y-z-3=0 and passing through the circle $x^2+y^2+z^2-2x-3y+4z+8=0$, $x^2+y^2+z^2+4x+5y-6z+2=0$
 - Show that the two circles $x^2+y^2+z^2-y+2z=0$, x-y+z-2=0; $x^2+y^2+z^2+x-3y+z-5=0$, 2x-y+4z-1=0 lies on the same sphere and find its equation
 - Find the radius and center of the circle of intersection of the sphere $x^2+y^2+z^2-2x-4z=11$ and the plane x+2y+2z=15
- 23 If r_1, r_2 are the radii of two orthogonal spheres then the radius of their common circle is $\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$

- 24. Find the equation of the sphere which passes through the plane 3x+2y-z+2=0 at (1, -2,1) and cuts orthogonal to the sphere $x^2+y^2+z^2-4x+6y+4=0$
- 25. Find the equation of the sphere intersecting the spheres $x^2+y^2+z^2+x-3z-2=0$, $x^2+y^2+z^2+1/2$ x+3/2 y+2=0 orthogonal and passing through the points (0,3,0), (-2, -1, -4)
- 26. Prove that every sphere through the circle $x^2+y^2+z^2-2ax+r^2=0, z=0$ intersects orthogonal every circle sphere through the circle $x^2+z^2=r^2, y=0$.
- 27. Find the equation of the sphere cutting the sphere $x^2+y^2+z^2-4x+6y+4=0$ orthogonally and touching the plane 3x+2y-z+2=0 at (1, -2, 1)
- Find the equation of the cone with the vertex at origin and passing through the circle given by $x^2+y^2+z^2+x-2y+3z-4=0$, $x^2+y^2+z^2+2x-3y+4z-5=0$.
- 29. Find the equation of the right circular cone whose vertex at P (2, -3,5), axis PQ that makes equal angles and semi vertical angle is 30°.
- 30: Find the equation of the right circular cone whose vertex at P (2, -3,5), axis PQ which makes equal angle with axes and which passes through A (1, -2,3)
- 31. Prove that $33x^2+13y^2-95z^2-144yz-96zx-48xy=0$ represents a right circular cone whose axis is the line 3x=2y=z. Find its vertical angle.
- Find the angles between the lines of section of the planes 3x+y+5z=0 and cone
 6yz-2zx+5xy=0
- 33. Find the equation of the lines in which the plane 2x+y-z=0 cuts the cone $4x^2-y^2+z^2=0$

Prove that the cones
$$ax^2 + by^2 + cz^2 = 0$$
 and $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$ are reciprocals.

- 36. Prove that perpendicular drawn form the origin to tangent planes to the cone $3x^2+4y^2+5z^2+2yz+4zx+6xy=0$ lies on the cone $19x^2+11y^2+3z^2+6yz-10zx-26xy=0$
- 37. Prove that if a right circular cone has three mutually perpendicular generators then semi vertical angel is Tan⁻¹ 2/2
- 38. Find the equation of the cone whose vertex is (α, β, γ) and base $y^2=4ax, z=0$
- The section of a cone whose vertex is P and guiding curve, the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z=0 \text{ by the plane } x=0 \text{ is a rectangular hyperbola show that the locus of P}$ is $\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1$
- 40. Find the equation of the cone formed by rotating the line 2x+3y=6,z=0 about Y-axis
- 41. Find the equation of the cone whose vertex is (1,2,3) and the guiding curve of the circle is $x^2+y^2+z^2=4, x+y+z=1$
- 42. Obtain the condition of the general equation of the 2nd degree representing a cone.
- 43. If $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ represents one of a set of three mutually perpendicular generators of the cone 5yz-8zx-3xy=0. Find the equations of the other two

- Show that the angle between the lines given by x+y+z=1, ayz+bzx+cxy=0 is $\pi/2$ if $a+b+c\neq=0$ but $\pi/3$ if $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
- 45. Find the vertex of the cone $7x^2+2y^2+2z^2-10xz+10xy+26x-2y+2z-17=0$
- Show that the locus of a point from which the three mutually perpendicular tangent lines can be drawn to the cone $ax^2+by^2+cz^2=1$ is a $(b+c) x^2+b(c+a)y^2+c$. $(a+b)z^2=a+b+c$
- 47. Find the equation of the cone with vertex (1,1,2) and guiding curve is $x^2+y^2=4,z=2$
- 48. Show that the locus of a point from which the three mutually perpendicular lines be drawn to meet the curve $x^2+y^2=1$, z=0 is $x^2+y^2+2z^2=1$
- 49. If $\frac{x}{1} = \frac{y}{-1} = \frac{z}{2}$ is one of the three mutually perpendicular generators of the cone 16yz-33zx-25xy=0, find the other two
- 50. Find the cone which contains the three coordinate axes and the three lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}; \frac{x}{-1} = \frac{y}{1} = \frac{z}{1}; \frac{x}{5} = \frac{y}{4} = \frac{z}{1}$
- 51. Find the equation of right circular cone with its vertex at (2,3,1) , axis parallel to the line $\frac{x}{-1} = \frac{y}{2} = \frac{z}{1}$ and one of its generators have dr's 1, -1,1

3

52. Find the equation of the cone which touches the three co-ordinate planes and the planes x+2y+3z=0,2x+3y+4z=0

- Find the condition that the lines of the intersection of the plane lx+my+nz=0 53. and the cone fyz+gzx+hxy=0, ax2+by2+cz2=0 should be coincident
- Prove that the cones ayx+bzx+cxy=0 and $\sqrt{ax} + \sqrt{by} + \sqrt{cz} = 0$ are reciprocal 54.
- Find the equation of the cone whose vertex at origin and which passes through 55. the curve given by $ax^2+by^2+cz^2=1$, $\alpha x^2+\beta y^2=2z$
- Find the enveloping cone of the sphere $x^2+y^2+z^2-2x+4z-1=0$ with its vertex at 56. (1,1,1).
- Find the equation of the right circular cylinder of radius 2 whose axis passes 57. through the point (1,2,3) and has direction cosines proportional to (2,-3,6).
- Find equation of the enveloping cylinder of the sphere $x^2+y^2+z^2-2x+4y-$ 58. 1=0, having its generators parallel to the line x=y=z.
- Find the equation of the right circular cylinder whose axis is $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ 59. and radius is 2
- Find the equation of the right circular cylinder whose guiding curve is the circle 60. through the points (1,0,0), (0,1,0), (0,0,1)26/8/68 B.o.S Chair Han B.o.S

###