Andhra University, Visakhapatnam I B.Sc/ I B.A Mathematics Paper-I

Model Paper

(For Students studying I B.Sc/I B.A during 2008-09)

Time: 3 Hrs

Max. Marks: 100

Note: Follow the instructions carefully, given in each section.

SECTION -A

Answer all the FOUR questions. Each question carries 15 marks.(4X15 = 60 Marks)

- 1. (a). (i). Solve $(1+y^2)dx = (Tan^{-1}y-x)dy$ (8M) (ii). Solve ap²+py-x=0
 - (b).(i). Show that the family of confocal conics $x^2/(a^2+\lambda)+y^2/(b^2+\lambda)=1$ is self orthogonal. Where λ is the parameter (ii). Solve (py+x)(px-y)=2p(8M)
 - (7M)
- 2. (a).(i). Solve $(D^2+1)y=x^2 \sin 2x$ (ii). Solve $[(x-1)D^2-xD+1]y=(x-1)^2$ by the method of variation of (8M)
 - (7M)
 - (b). (i). Solve $(D^2-2D)y=e^x \sin x$ by the method of undetermined coefficients.
 - (ii). Solve dx/dt = 3x+2y, dy/dt+5x + 3y = 0. (8M) (7M)
- 3. (a).
 - (i). Prove that the lines (x+1)/1=(y+1)/2=(z+1)/3 and x+2y+3z-8=0=2x+3y+4z-11. are intersecting and find the point of their intersection find also the equation to the plane containing them.
 - (ii). A sphere is inscribed in the tetrahedron with faces x=0, y=0, z=0, 2x+6y+3z=14. Find the equation of the sphere.

Or

- (b).
- (i). Find the equation of the sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and cuts orthogonally the sphere $x^2+y^2+z^2-4x+6y+4=0$ (8M)
- (ii). Find the bisecting plane of the acute angle between the planes 3x-2y-(7M)

4. (a).

- (i). Find the equations of the tangent planes to the cone $9x^2-4y^2+16z^2=0$ which contains the line x/32=y/72=z/27. (8M)
- (ii). Find the equation to the right circular cylinder whose guiding circle is $x^2+y^2+z^2=9$, x-y+z=3 (7M)

Or

(b).

- (i). Find the equation to the right circular cone whose vertex is P(2,-3,5), axis PQ which makes equal angles with the axes and which passes through A(1,-2, 3). (8M)
- (ii). Find the equation of the cylinder whose generators are parallel to X/1=y/2=z/3 and which passes through the curve $x^2+y^2=16$, z=0. (7M)

SECTION - B

Answer any FIVE out of EIGHT questions. Each carries 4 Marks. 5 X 4 = 20 Marks

- 5. Solve $(xy \sin xy + \cos xy) y dx + (xy \sin xy \cos xy) x dy=0$
- 6. Solve $dx/z(x+y) = dy/z(x-y) = dz/x^2 + y^2$
- 7. Solve $(D^2-6D+13)y=8e^{3x} \sin 2x$.
- 8. Solve $x^2 d^2y/dx^2 3x dy/dx + 5y = x^2 \sin(\log x)$
- A variable plane is at a constant distance P from the origin and meets the axes in A,B,C. Show that the locus of the centroid of the tetrahedron OABC is x⁻²+y⁻²+z⁻²=16p⁻²
- 10. Find the image of the point (2,-1,3) in the plane 3x-2y+z=9.
- 11. Find the equation to the cone which passes through the three coordinate axes and the lines x/1=y/-2=z/3 and x/2=y/1=z/1
- 12. Show that the two lines of intersection of the plane ax+by+cz=0 with the cone yz+zx+xy=0 will be perpendicular if 1/a+1/b+1/c=0.

SECTION - C

Answer all the ten questions. Each question carries 2 marks $10 \times 2 = 20 \text{ Marks}$

- 13. Solve (y+z)dx + (z+x)dy + (x+y)dz=0
- 14. Find the orthogonal trajectory of y=cx where c is the parameter.
- 15. Solve p = log(px-y)
- 16. Solve $(D^2 + D + 1)y = 0$
- 17. Show that the system $Dx+2Dy=e^{t}$, Dx+2Dy=t is degenerate.
- 18. Foot of the perpendicular from the origin to a plane is (2,-3,4). Find the equation to the plane.
- 19. Show that the line (x+1)/-1 = (y+2)/3 = (z+5)/5 \\ \(\) \(
- 20. Find t if the radius of the sphere $x^2+y^2+z^2+6x-8y-t=0$ is 6.
- 21. Find polar plane of the point (0,-1,1) with respect to the sphere $x^2+y^2+z^2-2x+4y+6z-11=0$
- 22. Show that x/1 = y/-1 = z/-1 is a generator of the cone 5yz + 8zx + 3xy = 0

CHAIRHAM, BOSCOS