Roll No.

Total Pages: 4

MDE/M-15

4031

COMPLEX ANALYSIS Paper–IV (MM-404)

Time: Three Hours] [Maximum Marks: 80

Note: Attempt *five* questions in all, selecting at least *one* question from each section.

SECTION-I

- 1. (a) Write notes on the following:
 - (i) Piecewise smooth arc.
 - (ii) Simply and Multiply connected region.
 - (iii) Complex line integral.

8

(b) State and prove Cauchy-Goursat lemma.

8

2. (a) Let f(z) be analytic within and on a positively oriented simple closed contour C and z_0 is any point lying in it,

then show that
$$f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^2} dz$$
.

- (b) State and prove Fundamental theorem of Algebra. Hence show that every polynomial of degree $n \ (n \ge 1)$ has exactly n-roots.
- 3. (a) If a function f is analytic and not constant in a domain D then |f(z)| has no maximum value in D.

4031/1,000/KD/1060

0001\dD1\000[P.T.O.

(b) If f(z) is analytic in a circular domain D, then for every $z \in D$, f(z) can be expressed as

$$f(z) = f(a) + (z - a)f'(a) + \frac{(z - a)^2}{2}f''(a) + \cdots$$

$$+\frac{(z-a)^n}{\lfloor \underline{n}\rfloor}f^n(a)+\cdots,$$

where a is the centre of the circular domain.

SECTION-II

4. (a) Expand the function $f(z) = \frac{1}{z^2 - 3z + 2}$ as Laurent's

series in the region (i) 0 < |z| < 1, (ii) 1 < |z| < 2, and

(iii)
$$|z| > 2$$
. Language and refugees (iii)

- (b) State and prove Argument principle.
- 5. (a) Using Contour integration, show that
- $\int_{0}^{2\pi} \frac{d\theta}{1+a\sin\theta} = \frac{2\pi}{\sqrt{1-a^2}}.$
- (b) Show that a bilinear transformation maps inverse points w.r.t. a circle or straight line onto inverse points w.r.t. the image circle and the image line.

SECTION-III

(a) If $\{f_n\}$ is a sequence in H(G) and f belongs to C(G, C) such that $f_n \to f$ then show that f is analytic and $f_n^{(K)} \to f^{(K)}$ for each integer $K \ge 1$.

0

- (b) Define Gamma function, and derive the Legendre duplication formula.
- . (a) Derive the Riemann's function equation,

$$\xi(1-z) = 2^{1-z}\pi^{-z}\cos\frac{1}{2}\pi z |z| \xi(z)$$
.

(b) Define Riemann Zeta function, $\xi(z)$ and show that for Re(z) > 1,

$$\xi(z)|z = \int_{0}^{\infty} (e^{t} - 1)^{-1} t^{z-1} dt.$$

00

8. (a) Show that the unit circle is a natural boundary of the function

$$f(z) = \sum_{n=0}^{\infty} z^{\lfloor n \rfloor}.$$

00

(b) Using Mittag Leffler's theorem, prove that

cosec
$$z = \frac{1}{z} + 2z \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 \pi^2 - z^2}.$$

00

SECTION-IV

- 9. (a) State and prove Harnack's inequality.
- (b) State and prove Hadmard's Three circle theorem.

4031/1,000/KD/1060

[P.T.0

10. (a) Using Hadmard's Factorization theorem, prove that

$$\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right).$$

8

(b) State and prove Montel-Caratheodory theorem.

 $\xi(1-z) = 2^{1-z} \pi^{-z} \cos \frac{1}{2} \pi z \left[z \, \xi(z) \right]$ (1-MOFF) 3.

 $\xi(z) = \int_{z=1}^{z=1} \left(e^{z} - 1 \right)^{1} e^{-z} dt.$

Show that the unit circle is a bathal boundary of the function

 $f(z) = \sum_{n} z^{ln}.$ and width expangator month points.

b) Using Mittag Leffler's theorem, prove that

 $\int \frac{ds}{(s,t)^2(s,t)} \frac{ds}{(s,t)^2(s,t)} \int \frac{ds}{(s,t)^2(s,t)} ds$

Secure of the angle of the state of the stat

(b) State and prove Hadmard's Timee circle theorem.

4031/1,000/KD/1060

4