Section 4: Mathematics / Biology

Students will have to attempt either Mathematics/Biology as per the eligibility of the program applied.

Mathematics

66. The solution of the equation. $\log \left(\log _{5}(\sqrt{x+5}+\sqrt{x})\right)=0$ is
(a) 2
(b) 4
(c) 3
(d) 8
67. Let $\frac{1}{q+r}, \frac{1}{r+p}$ and $\frac{1}{p+q}$ are in A.P. where $p, q, r, \neq 0$, then
(a) p, q, r are in A.P.
(b) p^{2}, q^{2}, r^{2} are in A.P.
(c) $\frac{1}{p} \cdot \frac{1}{q} \cdot \frac{1}{r}$ in A.P.
(d) none of these
68. If $b \in \mathrm{R}^{+}$then the roots of the equation $(2+b) x^{2}+(3+b) x+(4+b)=0$ is
(a) real and distinct
(b) real and equal
(c) imaginar
(d) cannot predicted
69. Solve for integral solutions $x_{1}+x_{2}+x_{3}+\ldots+x_{6} \leq 17$, where $1 \leq x_{i} \leq 6, i=1,2, \ldots 6$. Number of solutions will be
(a) ${ }^{17} \mathrm{C}_{6}-6{ }^{11} \mathrm{C}_{5}$
(b) ${ }^{17} \mathrm{C}_{11}-6{ }^{11} \mathrm{C}_{5}$
(c) ${ }^{17} \mathrm{C}_{5}-6{ }^{11} \mathrm{C}_{5}$
(d) ${ }^{17} \mathrm{C}_{11}-5{ }^{11} \mathrm{C}_{6}$
70. The probability that a certain beginner at golf gets a good shot if he uses the correct club is $\frac{1}{3}$, and the probability of a good shot with an incorrect club is $\frac{1}{4}$. In his bag there are 5 different clubs, only one of which is correct for the shot in question. If he chooses a club at random and take a stroke, the probability that he gets a good shot is
(a) $\frac{1}{3}$
(b) $\frac{1}{12}$
(c) $\frac{4}{15}$
(d) $\frac{7}{12}$
71. $O P Q R$ is a square and M, N are the middle points of the side $P Q$ and $Q R$ respectively. Then the ratio of the area of the square and the triangle OMN is
(a) $4: 1$
(b) $2: 1$
(c) $4: 3$
(d) $8: 3$
72. Two vertices of an equilateral triangle are $(-1,0)$ and $(1,0)$ and its circumcircle is
(a) $x^{2}+\left(y-\frac{1}{\sqrt{3}}\right)^{2}=\frac{4}{3}$
(b) $x^{2}-\left(y+\frac{1}{\sqrt{3}}\right)^{2}=\frac{4}{3}$
(c) $x^{2}+\left(y-\frac{1}{\sqrt{3}}\right)^{2}=-\frac{4}{3}$
(d) none of these
73. If in a $\triangle \mathrm{ABC}, \sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}=2$, then the triangle is always
(a) isosceles triangle
(b) right angled
(c) acute angled
(d) obtuse angled
74. If the vertex and the focus of a parabola are $(-1,1)$ and $(2,3)$ respectively, then the equation of the directrix is
(a) $3 x+2 y-25=0$
(b) $x+2 y+7=0$
(c) $2 x-3 y+10=0$
(d) $3 x+2 y+14=0$.
75. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having its centre at $(0,3)$ is
(a) 4
(b) 3
(c) $\sqrt{12}$
(d) $7 / 2$
76. If $\mathrm{P}\left(x_{1}, y_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}\right), \mathrm{R}\left(x_{3}, y_{3}\right)$ and $\mathrm{S}\left(x_{4}, y_{4}\right)$ are four concyclic points on the rectangular hyperbola $x y=c^{2}$, then the co-ordinates of the orthocentre of $\triangle \mathrm{PQR}$ are
(a) $\left(x_{4},-y_{4}\right)$
(b) $\left(x_{4}, y_{4}\right)$
(c) $\left(-x_{4},-y_{4}\right)$
(d) $\left(-x_{4}, y_{4}\right)$
77. The coefficient of $x^{n} y^{n}$ in the expansion of $[(1+x)(1+y)(x+y)]^{n}$ is
(a) $\sum_{r=0}^{n} C_{r}$
(b) $\sum_{r=0}^{n} C_{r}{ }^{2}$
(c) $\sum_{r=0}^{n} C_{r}^{3}$
(d) none of these
78. z_{0} is one of the roots of the equation $z^{n} \cos \theta_{0}+z^{n-1} \cos \theta_{1}+\ldots+\cos \theta_{n}=2$, where $\theta_{i} \in \mathrm{R}$, then
(a) $\left|z_{0}\right|<\frac{1}{2}$
(b) $\left|z_{0}\right|>\frac{1}{2}$
(c) $\left|z_{0}\right|=\frac{1}{2}$
(d) none of these
79. The second order differential equation is
(a) $y^{\prime 2}+x+y^{2}$
(b) $y^{\prime} y^{\prime \prime}+y=\sin x$
(c) $y^{\prime \prime \prime}+y^{\prime \prime}+y=0$
(d) $y^{\prime}=0$
80. $\int e^{3 x}\left(\frac{1+3 \sin x}{1+\cos x}\right) d x$ is equal to
(a) $e^{3 x} \cot x+c$
(b) $\mathrm{e}^{3 \mathrm{x}} \tan \frac{x}{2}+c$
(c) $e^{3 x} \sin x+c$
(d) $e^{3 x} \cos x+c$
81. If m and n are positive integers and $f(x)=\int_{1}^{x}(t-a)^{2 n}(t-b)^{2 m+1} d t, a \neq b$, then
(a) $x=b$ is a point of local minimum
(b) $x=b$ is a point of local maximum
(c) $x=a$ is a point of local minimum
(d) $x=a$ is a point of local maximum
82. If in a triangle $\mathrm{ABC} \frac{2 \cos A}{a}+\frac{\cos B}{b}+\frac{2 \cos C}{c}=\frac{a}{b c}+\frac{b}{c a}$, then the value of the angle A is
(a) 45°
(b) 90°
(c) 135°
(d) 60°
83. The general solution of the equation $2^{\cos 2 x}+1=3.2^{-\sin ^{2} x}$ is
(a) $n \pi$
(b) $\left(n+\frac{1}{2}\right) \pi$
(c) $\left(n-\frac{1}{2}\right) \pi$
(d) all of the above.
84. Total number of positive real values of x satisfying $2[x]=x+\{x\}$, where [.] and \{.\} denote the greatest integer function and fractional part respectively is equal to
(a) 2
(b) 1
(c) 0
(d) 3
85. If $\lim _{x \rightarrow 0} \frac{((a-n) n x-\tan x) \sin n x}{x^{2}}=0$, where n is nonzero real number, then a is equal to
(a) 0
(b) $\frac{n+1}{n}$
(c) n
(d) $n+\frac{1}{n}$
86. $f(x)=\left\{\begin{array}{l}4 x-x^{3}+\ln \left(a^{2}-3 a+3\right), \\ x-18,\end{array} \quad 0 \leq x<3.6\right.$. Find the complete set of values of a such that $f(x)$ has a local minima at $x=3$ is
(a) $[-1,2]$
(b) $(-\infty, 1) \cup(2, \infty)$
(c) $[1,2]$
(d) $(-\infty,-1) \cup(2, \infty)$
87. The number of values of k for the system of equations $(k+1) x+8 y=4 k$ and $k x+(k+3) y=3 k-1$ has infinitely many solutions
(a) 0
(b) 1
(c) 2
(d) infinite
88. The matrix $\left[\begin{array}{cc}\frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2}\end{array}\right]$ is
(a) unitary
(b) null matrix
(c) symmetric
(d) none of these
89. The area between the curves $y=x e^{x}$ and $y=x e^{-x}$ and the line $x=1$ is
(a) $2 e$
(b) e
(c) $2 / e$
(d) $1 / e$
90. If the unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ and $|\vec{a}-\vec{b}|<1$ then θ lies in the interval
(a) $\left[0, \frac{\pi}{6}\right)$
(b) $\left[\frac{5 \pi}{6}, 2 \pi\right]$
(c) $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
(d) $\left[\frac{\pi}{2}, \frac{5 \pi}{6}\right]$
