AIPMT 2011 ANALYSIS

We hope you have done in AIPMT conducted on 3rd April, 2011.

100

There were four versions of the Question papers, A, B, C & D. In different versions the orders of the subjects were also different. The order of the answer choices were also jumbled in different versions. The answer key for all the four versions are given here. In addition to this, detailed solution of version D is also included.

KEY AND SOLUTION FOR AIPMT -PRELIMS-2011 Solutions for Version -D

NOTE:

The terms "Easy (E)", "Medium: (M)", and "Difficult: (D)" are based on the following points

EASY (E):-

Easy Questions are defined as those questions that can be answered by a student who knows the concept under question. It is a direct application of the concept. A student is expected to have attempted all the EASY Category Questions.

MEDIUM (M):-

Medium Difficulty Questions are those questions that may involve more than one concept. A wellprepared student should be able to identify at least 75% of these and solve them correctly.

DIFFICULT (D):-

Difficult Questions are those questions which definitely involve multiple concepts and are tricky. The students may be led to think away from the ideal method of problem solving. It will require good effort even from the well prepared student to identify the Difficult ones and categorize them accordingly.

Code		Code		Code	10°	Code	
A	KEY	В	KEY	C	KEY	D	KEY
1	4	1	2	8 1 . S	2	1	4
2	3	2	2 2	2	3	2	3
3	3	3	3	3	4	3	1
4	4	4	2	4	4	4	3
5	3	5		5	4	5	2
6	2	6	4	6	2	6	1
7	1	7	2	7	3	7	3
8	4	8	2	8	2	8	4
9	3	9	3	9	4	9	2
10	3	10	4	10	2	10	4
11	3	11	2	11	2	11	2
12	1	12	3	12	2	12	2
13	2	13	1	13	3	13	2
14	1	14	3	14	3	14	1
15	4	15	3	15	4	15	2

16	4	16	2	16	3	16	2
17	1	17	2	17	3	17	1
18	4	18	1	18	1	18	1
19	3	19	4	19	4	19	4
20	3	20	2	20	4	20	4
21	3	21	3	21	3	21	3
22	4	22	2	22	1	22	1
23	2	23	2	23	4	23	2
24	2	24	2	24	1	24	1
25	3	25	1	25	4	25	2
26	2	26	2	26	3	26	2
27	1	27	3	27	3	27	4
28	3	28	1	28	2	28	3
29	1	29	2	29	4	29	3
30	1	30	1	30	4	30	1
31	2	31	2	31	2	31	3
32	2	32	2	32	2	32	1
33	4	33	1	33	2 & 4	33	1
34	4	34	2	34	3	34	2
35	2	35	4	35	3	35	2
36	1	36	3	36	2	36	3
37	3	37	3	37	40	37	2
38	4	38	1	38		38	3
39	4	39	3	39	2	39	1
40	3	40		40	4	40	1
41	3	41	3	41	4	41	3
42	2	42	4 .0	42	4	42	4
43	3	43	1	43	1	43	4
44	1	44	2 4	44	2	44	1
45	4	45	3	45	1	45	3
46	4	46	2	46	2	46	1
47	2	47	3	47	4	47	4
48	4	48	2	48	1	48	4
49	1	49	1	49	4	49	2
50	1	50	1	50	3	50	1
51	3	51	4	51	3	51	3
52	3	52	3	52	2	52	3
53	3	53	2	53	4	53	3
54	1	54	2	54	2	54	1

55	3	55	2	55	1	55	3
56	3	56	3	56	4	56	1
57	4	57	1	57	2	57	1
58	4	58	4	58	4	58	3
59	1	59	4	59	3	59	3
60	1	60	2	60	1	60	4
61	4	61	2	61	1	61	3
62	3	62	2&4	62	2	62	2
63	2	63	1	63	4	63	3
64	1	64	4	64	2	64	3
65	3	65	3	65	3	65	2
66	3	66	2	66	4	66	2
67	4	67	4	67	2	67	1
68	1	68	4	68	2	68	1
69	4	69	2	69	1	69	3
70	2	70	1	70	2	70	1
71	4	71	2	71	3	71	3
72	3	72	1	72	3	72	4
73	2	73	4	73	3	73	1
74	2	74	3	74	4	74	3
75	4	75	4	75	1	75	3
76	2	76	2	76	2	76	4
77	3	77	2	77	3	77	1
78	4	78	4	78	2	78	1
79	3	79	4	79	2	79	4
80	2	80	2	80	4	80	2
81	4	81	2	81	1	81	1
82	4	82 🔨	4	82	2	82	2
83	2	83	4	83	4	83	3
84	3	84	3	84	1	84	4
85	2	85	3	85	2	85	1
86	1	86	3	86	4	86	1
87	2	87	4	87	3	87	1
88	2	88	1	88	3	88	4
89	4	89	4	89	4	89	3
90	3	90	2	90	4	90	4
91	3	91	1	91	3	91	1
92	4	92	3	92	2	92	1
93	3	93	1	93	2	93	1
1	1	1					

95	2	95	4	95	3	95	1
96	2	96	3	96	1	96	1
97	3	97	4	97	1	97	4
98	3	98	4	98	4	98	3
99	4	99	2	99	2	99	4
100	3	100	1	100	4	100	4
101	1	101	2	101	3	101	3
102	3	102	2	102	1	102	2
103	3	103	2	103	4	103	1
104	2	104	4	104	1	104	3
105	1	105	3	105	1	105	4
106	1	106	2	106	4	106	3
107	3	107	2	107	4	107	3
108	1	108	1	108	2	108	1
109	4	109	2	109	3	109	1
110	1	110	2	110	3	110	3
111	3	111	3	111	4	111	2
112	1	112	1	112	2	112	1&3
113	1	113	. 1	113	4	113	4
114	3	114	4	114	3	114	2
115	2	115	4	115	2	115	2
116	1	116	4	116	1.0	116	2
117	1&3	117	2	117	4	117	2
118	2	118	2	118	3	118	1
119	3	119		119	2	119	1
120	1	120	40	120	1	120	1
121	2	121	4	121	3	121	1
122	4	122	3	122	4	122	4
123	3	123	3	123	4	123	3
124	3	124	4	124	4	124	3
125	2	125	1	125	4	125	2
126	4	126	2	126	2	126	1
127	3	127	4	127	4	127	4
128	2	128	2	128	4	128	3
129	4	129	1	129	1	129	3
130	3	130	1	130	1	130	3
131	4	131	4	131	1	131	1
132	1	132	1	132	4	132	3
133	2	133	4	133	2	133	2

134	4	134	1	134	1	134	1
135	3	135	2	135	3	135	3
136	3	136	4	136	2	136	4
137	4	137	3	137	2	137	3
138	1	138	2	138	1	138	4
139	1	139	1	139	1	139	2
140	3	140	1	140	2	140	1
141	2	141	1	141	3	141	4
142	3	142	1	142	2	142	4
143	2	143	2	143	1	143	2
144	1	144	4	144	2	144	1
145	1	145	2	145	3	145	3
146	1	146	3	146	4	146	4
147	3	147	2	147	1	147	4
148	3	148	2	148	1	148	4
149	2	149	3	149	4	149	4
150	3	150	2	150	3	150	1
151	3	151	4	151	4	151	2
152	2	152	2	152	3	152	1
153	3	153	4	153	3	153	1
154	4	154	2	154	1.	154	4
155	1	155	1	155	40	155	1
156	3	156	4	156	1 N	156	3
157	3	157	2	157	4	157	1
158	1	158	2	158	4	158	4
159	1	159	3.0	159	2	159	4
160	1	160	3	160	4	160	2
161	3	161	2	161	1	161	2
162	4	162	3	162	4	162	2
163	4	163	4	163	3	163	3
164	3	164	1	164	1	164	1
165	1	165	1	165	4	165	1
166	4	166	2	166	3	166	1
167	2	167	2	167	1	167	1
168	3	168	3	168	3	168	3
169	3	169	4	169	2	169	3
170	2	170	2	170	4	170	4
171	1	171	4	171	1	171	2
172	3	172	3	172	4	172	4

173	1	173	2	173	4	173	1
174	1	174	3	174	3	174	1
175	1	175	2	175	4	175	2
176	2	176	1	176	3	176	2
177	2	177	4	177	4	177	4
178	2	178	1	178	4	178	4
179	3	179	3	179	2	179	2
180	1	180	4	180	1	180	2
181	2	181	4	181	1	181	1
182	3	182	2	182	3	182	2
183	2	183	1	183	1	183	1
184	1	184	3	184	3	184	2
185	3	185	3	185	4	185	2
186	3	186	1	186	2	186	1
187	4	187	1	187	4	187	1
188	4	188	3	188	3	188	3
189	4	189	4	189	2	189	1
190	2	190	2	190	3	190	4
191	3	191	3	191	1	191	1
192	1	192	2	192	4	192	3
193	2	193	3	193	1	193	4
194	2	194	2	194	40	194	2
195	2	195	3	195	4	195	1
196	4	196	3	196		196	4
197	1	197	2	197	2	197	4
198	1	198	4.9	198	3	198	1
199	4	199	and the	199	1	199	4
200	1	200	3	200	4	200	1
		Mar	32				

SI.	Kev	Solution		Diffi	culty L	Remarks	
No.		Columni	Chapter Name	Е	М	D	
1	4	$\frac{1}{2}mv^2 = eV$ $v \propto \sqrt{V}$	Modern Physics		\checkmark		
2	3	Basic knowledge and definition	Electronics	\checkmark			
3	1	$p = \frac{hv}{c}$	Modern Physics		\checkmark		

		$KE = \frac{p^2}{2 M}$					
		$=\frac{h^2v^2}{2 Mc^2}$					
4	3	$a = r\omega^{2}$ $= \frac{4\pi^{2}r}{T^{2}}$ $r = 0.05 \text{ m}$ $T = 0.2\pi \text{ s}$ $\Rightarrow a = 5 \text{ m s}^{-2}$	Dynamics Circular Motion		\checkmark		
5	2	Assume P = 1000 W (Instead of 1000 kW) Energy / hour = 1000 × 3600 J Energy / fission = 200 MeV = 200 × 1.6 × 10 ⁻¹³ J \therefore n = No. of fission / hour = $\frac{1000 \times 3600}{200 \times 1.6 \times 10^{-13}}$ No. of mole / hour = $\frac{n}{N}$ \therefore Mass / hour = $\frac{n}{N} \times 235$ gram = $\frac{1000 \times 3600 \times 235}{200 \times 1.6 \times 10^{-13} \times 6.02 \times 10^{23}}$ = 43.9 × 10 ⁻⁶ g \cong 40 µg	Modern Physics			V	If we take P = 1000 kW, no answer is correct.
6	1	$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$ $\Rightarrow \frac{1}{16} = \left(\frac{1}{2}\right)^{\frac{t}{50}}$ $\Rightarrow t = 200 \text{ years}$	Modern Physics	6 Q	~	10	
7	3	U = Energy density × volume = $\frac{1}{2} \varepsilon_0 E^2 Ad$	Electrostatics and Capacitors	\checkmark			
8	4	$\theta = 2t^{3} - 6t^{2}$ $\alpha = \frac{d^{2}\theta}{dt^{2}} = 12t - 12$ Where $\alpha = 0, \tau = 0$ $\Rightarrow t = 1 \text{ s}$	Rotational dynamics				
9	2	$i_{9} = \sqrt{\frac{P}{R}} = \sqrt{\frac{36}{9}} = 2 A$ $i_{6} = \frac{i_{9} R}{6} = \frac{2 \times 9}{6} = 3 A$ $I = i_{9} + i_{6} = 2 + 3 = 5 A$ $V_{2} = I. R_{2} = 5 \times 2 = 10 V$	Current Electricity		\checkmark		
10	4	$\phi_1 = (\omega t + kx + 0.57)$ $\phi_2 = \left(\frac{\pi}{2} + \omega t + kx\right)$ $\phi = \phi_2 - \phi_1 = 1 \text{ rad}$	Waves				
11	2	$KE_{max} = eV$ $\Rightarrow V = \frac{KE_{max}}{e}$ = 0.5 volt	Modern Physics		\checkmark		
12	2	T = (M + m) (g + a)	Laws of motion				

		= (940 + 60) (10 + 1) = 11.000 N					
13	2	$y = 1 + \omega t + \omega^2 t^2$ is not periodic. $y = \sin^3 \omega t$ is periodic but not SHM.	Oscillations		\checkmark		
14	1	$I_{AA} = I_{CM} + M\lambda^{2}$ $= I_{0} + M\left(\frac{L}{2}\right)^{2}$ $= I_{0} + \frac{ML^{2}}{4}$	Rotational dynamics		\checkmark		
15	2	Antimony is pentavalent \Rightarrow N-type semiconductor \Rightarrow excess free electrons	Electronics and Semiconduct- ors	V			
16	2	$\frac{v_1}{v_2} = \frac{\lambda_1 f_1}{\lambda_2 f_2}; \text{ But } (f_1 = f_2)$ $\Rightarrow \lambda_2 = \lambda_1 \frac{v_2}{v_1}$ $\Rightarrow \lambda_2 = \lambda_1 \times 10$ $= 10\lambda_1$	Waves		V		
17	1	$KE_{max} = hv - hv_0$ = $\frac{1}{2}mv^2$ $\Rightarrow \frac{v_1^2}{v_2^2} = \frac{(1-0.5)}{(2.5-0.5)} = \frac{1}{4}$ $\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{1}{4}} = \frac{1}{2}$	Modern Physics		\checkmark		
18	1	2[r + 2] = 0.5 [r + 9] 1.5r = 0.5 r = $\frac{1}{3} \Omega$	Current Electricity	• ₹ 0		0	
19	4	$ \begin{array}{c} \overline{E} \perp \overline{B} \perp \overline{c} \\ \left(\hat{i} \times \hat{j} = \hat{k} \right) \\ (\text{Poynting vector is in the direction of} \\ \left(\overline{E} \times \overline{B} \right)) \end{array} $	EM Waves	9 9 9	V		
20	4	Potential V(x) vs x is parabolic \Rightarrow SHM, starting from extreme position \Rightarrow x vs t cosine curve	SHM			V	Question need to be rephrased as "A particle of mass m is released from rest and its potential V(x) at position x is parabolic as shown in figure".
21	3	$\Delta S = \frac{\Delta Q}{T}$ $= \frac{m.L}{273 \text{ K}} = \frac{1000 \times 80 \text{ cal}}{273}$ $= 203 \text{ cal K}^{-1}$	Heat & Thermodynami cs		\checkmark		
22	1	mvr = L is conserved $\Rightarrow v_1r_1 = v_2r_2$	Gravitation				

		$\frac{v_1}{v_2} = \frac{r_2}{r_1}$					
23	2	$\phi = \frac{q}{\varepsilon_0}$ remains same.	Electrostatics				
24	1	$\frac{dE}{d\theta} = 0$ at neutral temperature	Thermoelectric ity				
25	2	Basic knowledge	Modern Physics	\checkmark			
26	2	$ \begin{array}{l} m \rightarrow (m-4) \\ n \rightarrow n-2+(2 \times 1) \\ = n \\ \Rightarrow \stackrel{(m-4)}{n} X \end{array} $	Modern Physics		\checkmark		
27	4	Feeble attraction \rightarrow paramagnetic Feeble repulsion \rightarrow diamagnetic Strong attraction \rightarrow ferromagnetic	Magnetism	\checkmark			
28	3	W = −150 J \therefore Q = +150 J (See remark)	Heat & Thermodynami cs		L L	×0.	In Physics, an expanding gas does positive work. Hence question is not correct. However, if we take work done by expanding gas as negative (followed in some conventions) then this answer is correct)
29	3	Minimum frequency needed for photoelectric emission	Modern Physics	\checkmark			
30	1	$\lambda = \frac{12.27}{\sqrt{V}} \stackrel{0}{\text{A}}$ $\lambda_2 = \lambda_1 \sqrt{\frac{V_1}{V_2}}$ $= \lambda_1 \sqrt{\frac{25}{100}} = \frac{\lambda_1}{2}$	Modern Physics		\checkmark		λ_2 becomes half of λ_1 . The usage 'decreases by 2 times' is not correct.
31	3	$E_{rms} = 200 V$ $X_{C} = \frac{1}{1 \times 10^{-6} \times 100} = 10^{4} \Omega$ $i_{rms} = \frac{E_{rms}}{X_{C}} = \frac{200}{10^{4}}$ $= 2 \times 10^{-2} A = 20 \text{ mA}$			V		
32	1	$v = \sqrt{2 \text{ gh}}$ $= \sqrt{2 \times 10 \times 20}$ $= 20 \text{ m s}^{-1}$	Kinematics	\checkmark			
33	1	P = $\overline{F}.\overline{v}$ $\overline{v} \& \overline{F}$ are maximum near the surface of Earth \overline{v} and \overline{F} in same direction, when stone hits the Earth.	Work Power Energy				

34	2	$V_{A} = 2 V_{\text{positive}} + 2 V_{\text{negative}}$ $= V_{1} - V_{2}$ $\Rightarrow \text{ only choice (2)}$	Electrostatics		\checkmark		
35	2	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$	Units & Dimensions	\checkmark			
36	3	$\overline{a} = \frac{\overline{v}_2 - \overline{v}_1}{t}$ $a = \frac{\sqrt{v_2^2 + v_1^2 - 2v_2v_1\cos\theta}}{t}$ $= \frac{50}{10} = 5 \text{ m s}^{-2}$	Kinematics	\checkmark			
37	2	Assuming μ = 1.5, f = 20 cm. Object between f and 2f. Real image, inverted, magnified \Rightarrow Option (2)	Ray Optics		\checkmark		Since µ is not given, solution cannot be found.
38	3	$R\left[\frac{1}{1^2} - \frac{1}{2^2}\right] = RZ^2\left[\frac{1}{2^2} - \frac{1}{4^2}\right]$ $\Rightarrow Z = 2$	Modern Physics		\checkmark		
39	1	Basic knowledge	Ray Optics				
40	1	$\Delta U = W_{agent}$ $-\Delta U = W_{conservative force}$	Work Energy Power		\checkmark		
41	3	Biasing of PN junction	Electronics & Semiconductor s	\checkmark			
42	4	$\theta = 45^{\circ}$ for maximum range $R_{max} = \frac{u^2}{g}$ $= \frac{20 \times 20}{10} = 40 \text{ m}$	Kinematics	V		ġ.	
43	4	$E = -\frac{d\phi}{dt}$ $\Rightarrow E \text{ is independent of time and}$ negative from t = 0 and t = $\frac{T}{4}$ $\Rightarrow \text{ Option (4)}$	EMI	8 Q 50	V		
44	1	$\tan \phi = \frac{X_L}{R} = \frac{L\omega}{R}$ $= \frac{3}{3} \frac{\Omega}{\Omega} = 1$ $\Rightarrow \phi = \frac{\pi}{4} \operatorname{rad}$ Work done = Area of E x graph	AC	\checkmark			
45	3	$= 2 \times (7 - 3) + \frac{1}{2} \times 2 \times (12 - 7)$ = 8 + 5 = 13 J	Work, Power, Energy		\checkmark		
46	1	$\overline{F}_{AB} = 0$ $\overline{F}_{AB} + \overline{F}_{BC} + \overline{F}_{CA} = 0$ $\Rightarrow \overline{F}_{CA} = -\overline{F}_{BC} = -\overline{F}$	Magnetic Effects of Electric Current		\checkmark		
47	4	Basic knowledge	EM Waves				
48	4	$\beta = \frac{\Delta I_{C}}{\Delta I_{B}} = \frac{(20 - 10) \text{ mA}}{(300 - 100) \mu\text{A}}$ $= \frac{10 \times 10^{-3}}{200 \times 10^{-6}} = 50$	Electronics and Semiconductor s		\checkmark		

49	2	$\left \overline{\mathbf{J}}\right = \left \overline{\Delta}\mathbf{p}\right $ = 2 MV	Work, Power, Energy				
50	1	$\overline{F}_e = -e\overline{E}$ \Rightarrow Speed decreases	Electromagneti sm	\checkmark			
51	3	It is the palindromic sequence preferred by EcoRI	Biotechnology		\checkmark		
52	3	Gametophyte of a pteridophyte is also known as prothallus	Plant Kingdom		\checkmark		
53	3	Flower is shoot modification of shoot	Morphology of Flowering Plants		\checkmark		
54	1	Arteries are the blood vessels that carry blood away from the heart. Pulmonary arteries are not always carrying oxygenated blood.	Body fluids and Circulation	\checkmark			
55	3	In EcoRI 'co' stands for species name from which the enzyme is isolated.	Biotechnology	\checkmark			
56	1	'a' and 'c' are the adaptations of desert lizards.	Organisms and Populations		\checkmark		
57	1	Jaya and Ratna are the semi dwarf varieties of rice developed in India.	Strategies for Enhancement in Food Production	\checkmark			
58	3	Agarose is used in Agarose gel electrophoresis.	Biotechnology	\checkmark			
59	3	Lecithin is a phospholipid in plasma membrane. Adenine is a nitrogen base not a nucleotide. Uracil is not a component of DNA.	Biomolecules			\checkmark	
60	4	ELISA is used for the diagnosis of AIDS.	Human Health and Disease	\checkmark		ьò.	
61	3	Secondary succession occurs in an already inhabited but abandoned areas.	Ecosystem	00	\checkmark		
62	2	It directs the male gamete towards the egg.	Sexual Reproduction in Flowering Plants	£.,	\checkmark		
63	3	Green house gases are CO_2 (60%) Methane (20%) CFC (14%) N ₂ O (6%).	Environmental Issues		\checkmark		
64	3	IUCN – is International Union for Conservation of Nature and Natural Resources.	Biodiversity		\checkmark		
65	2	Nucleosome appears like beads on a string structure.	Molecular Basis of Inheritance		\checkmark		
66	2	Pyramid of energy is always upright.	Ecosystem	\checkmark			
67	1	Option 1 is correctly matched.	Chemical Co- ordination and Integration			\checkmark	
68	1	Up to first trimester (12 weeks) is safe for MTP.	Reproductive Health		\checkmark		
69	3	Pinus is a gymnosperm.	Plant Kingdom		\checkmark		
70	1	Insects are the most abundant species in the biosphere.	Biodiversity	\checkmark			
71	3	Pressure above 140/90 harm vital organs like brain and kidney.	Body Fluids and Circulation			\checkmark	
72	4	Option '4' is correctly matched.	Chemical Co-			\checkmark	

			ordination and				
		Typhlosole extends from 26 to 95 th	Structural		1		
73	1	segment in <i>Pheretima</i> .	Organisation in Animals		N		
74	3	Eyes of potato are axillary buds.	Morphology of Flowering Plants		\checkmark		
75	3	Archaebacteria like methanogens acts on sewage and produce marsh gas (Methane).	Microbes in Human Welfare		\checkmark		
76	4	Cough while eating is due to improper movement of epiglottis.	Digestion and Absorption			\checkmark	
77	1	Alveoli acts as main site of exchange of gases.	Breathing and Exchange of Gases			\checkmark	
78	1	Retetestis and vasa efferentia are the ducts inside the testis and epidydims, vasdeferens found outside the testis.	Human Reproduction		\checkmark		
79	4	<i>Glomus</i> is the genus of fungus forming mycorrhiza and helps in phosphorous absorption by plants.	Strategies in Food Production		\checkmark		
80	2	Large sized climbers are seen in tropical forests	Organism and Population		\checkmark		
81	1	Ciliated columnar epithelial cells are present in the ligning of fallopian tubes and bronchioles.	Structural Organisation in Animals		\checkmark		
82	2	Blood group 'O' is called universal donor.	Principles of Inheritance and Variations		\checkmark		
83	3	IUD's are most commonly used contraceptive devices in India.	Reproductive Health	1	\checkmark	è.	
84	4	CAM pathway operates in monocots like maize and helps to conserve water.	Organisms and Population	60	×.	and the second se	
85	1	Leghaemoglobin in plants acts as an oxygen scavanger.	Mineral Nutrition	5	\checkmark		
86	1	Bundle of his is a part of conducting system of human heart.	Body fluids and Circulation		\checkmark		
87	1	Organisms like methanogens are most abundant in cattle yard.	Microbes and Human Welfare		\checkmark		
88	4	In human adults rennin absent and pepsin initiates milk digestion.	Digestion and Absorption		\checkmark		
89	3	Rhodopsin is a derivative of vitamin A	Neural control and Co- ordination		\checkmark		
90	4	RNA interference is also known as mRNA silencing is a part of natural defensive mechanism in eukaryotes.	Biotechnology		\checkmark		
91	1	<i>E. coli</i> is a prokaryote.	Biological Classification		\checkmark		
92	1	XO condition in humans is turners syndrome in grass hopper XO are femles.	Principles of Inheritance and Variations				
93	1	Maximum number of existing transgenic animals are <i>Mice</i> .	Biotechnology			\checkmark	
94	1	There are 50,000 varieteies of rice in India.	Biodiversity	\checkmark			
95	1	For the production of antibiotics sugar is to be continuously added.	Biotechnology			\checkmark	
96	1	Aleurone cells are triploid so the	Reproduction				

		chromosome number is 63.	in Flowering				
			Plants				
07	1	Converts atmospheric nitrogen to	Mineral Nutrition in		2		
57	4	nitrogen compounds.	Plants		v		
			Microbes in				
98	3	It is perfomed by aerobic organisms.	Human				
			Welfare Strategies for				
		Agrobacterium is called as 'Nature's	Enhancement		1		
99	4	genetic Engineer'	in Food		N		
			Production				
400		Standing state refers to amount of	F		.1		
100	4	ecosystem	Ecosystem		N		
		Enzyme thrombin converts fibringen	Body Fluids				
101	3	to fibrin	and Circulation				
		In declining populations, pre-	Organiana and				
102	2	reproductive groups are lesser than	Organism and Population		\checkmark		
		the reproductive group.					
103	1	Golgi bodies are involved in protein	Cell; The Unit		\checkmark		
		and lipid concentration	of Life				
		of cockroach. Mandibles are the part	Structural		,		
104	3	of cutting and chewing mouth parts of	Organisation in		N		
		cockroaches.	Animais				
405	4	The epithelial cells of Bowman's	Excretory		./		
105	4	capsule are called podocytes.	Flimination		N		
106	2	Sexual dimorphism is distinct in	Animal		.1		
100	3	Ascaris lumbricoids.	Kingdom		N		
107	2	The plane of alignment of the			2		
107	5	as the metaphase plate.	Cell Division	1		O .	
		Germplasm collection is one of the	Strategies for	2	8.		
108	1	major steps in plant breeding	Enhancement	- O	\checkmark		
		programme.	In FOOD Production	10			
		Chilli coming under the family	Morphology of	-			
109	1	Chilli coming under the family	Flowering		\checkmark		
		Melacese Fernented humandusts in	Plants				
110	3	sugar industry.	Biotechnology		\checkmark		
111	2	400 – 700 nm is PAR.	Ecosystem				
110	1/2	Sulphur and calcium are immobile	Mineral		al		
112	1/3	PAR elements.	Nutrition		N		
112	1	Saccharomyces cerevisiae is used for	Microbes in		~		
113	4	iuices to produce ethanol.	Welfare		v		
114	2	About 97% of oxygen is transported	Body Fluids		2		
114	2	in the form of oxy-haemoglobin.	and Circulation		N		
115	2	In parasitism, one species get benefit	Organisms and		\checkmark		
		And other one is narmed. Helper cells inturn activates both R	ropulation				
116	2	lymphocytes and cytotoxic T-	Human Health		\checkmark		
		lymphocytes.	anu Diseases				
117	2	Methyl isocyanate is not a radio	Environmental			\checkmark	
		Ground tissue consists of simple	Anatomy of				
118	1	tissues like parenchyma, collenchyma	Flowering		\checkmark		
		and sclerenchyma cells.	Plants				
110	4	Option '1' shows the correctly	Human			1	
119		system.	Reproduction			N	

120	1	Eutrophication is the natural ageing of lake by nutrient enrichment.	Environmental Issues		\checkmark		
121	1	Zygomorphic flowers are the characteristic feature of family Fabaceae.	Morphology of Flowering Plants		\checkmark		
122	4	A drupe is developed from monocarpellary superior ovaries and are one seeded fruit with hard endocarp.	Morphology of Flowering Plants		\checkmark		
123	3	23S rRNA is involved in the formation of peptide bond during translation.	Molecular Basis of Inheritance			\checkmark	
124	3	The evolution of modern man appears to parallel evolution of human brain and language.	Evolution			\checkmark	
125	2	Ribosomes are the membraneless ribonucleoprotein structures concerned with protein synthesis.	Cell; The Unit of Life		\checkmark		
126	1	Salamandra is the tailed amphibia with limbs.	Animal Kingdom			\checkmark	
127	4	Tiger – <i>Panthera tigri</i> s (Genus, Speices)	Biological Classification			\checkmark	
128	3	In plants, mutations can be artificially induced by using the gamma radiations.	Strategies for Enhancement in Food Production			\checkmark	
129	3	The guard cells possess chloroplasts and regulate the opening and closing of stomata.	Anatomy of Flowering Plants		\checkmark		
130	3	Wind pollination (Anemophily) is common in grasses.	Sexual Reproduction in Flowering Plants	0	V		
131	1	Renal pyramids are present in the medullary region of kidney, where as convoluted tubules are located at the cortical region.	Excretory Products and Elimination	50	~		
132	3	Himgiri is a hybrid variety of wheat that shows resistivity towards Hill bunt.	Strategies in Food Production		\checkmark		
133	2	Chondrichthyes are marine animals and have cartilagenous endoskeleton, with streamlined body.	Animal Kingdom		\checkmark		
134	1	Tears consists of lysozyme enzyme.	Human Health and Disease		\checkmark		
135	3	It is more permeable to K ⁺ ion and nearly impermeable to Na ⁺ .			\checkmark		
136	4	Polyembryony refers to presence of move than one embyyo inside the seeds.	Sexual Reproduction in Flowering Plants		\checkmark		
137	3	Ribosomes are the protein synthesising units of the cell.	Biomolecules	\checkmark			
138	4	Hybrid vigour is known as heterosis.	Strategies in Food Production		\checkmark		
139	2	Periderm consists of phellum, phellogen and phelloderm.	Anatomy of Flowering Plants				
140	1	The curve represents relationship between enzyme's and temperature.	Biomolecules			\checkmark	

141	4	In reptiles and birds the excretory matter is uric acid.	Excretory Products and Elimination	\checkmark			
142	4	Maintain a temperature 2° C lesser than body temperature.	Human Reproduction		\checkmark		
143	2	Rhizobium is present in leguminous plants.	Strategies in Food Production			\checkmark	
144	1	Puccinia is rust fungus.	Biological Classification		\checkmark		
145	3	Cleistogamy flowers do not open.	Sexual Reproduction in Flowering Plants		\checkmark		
146	4	Peach exhibits perigynous ovary.	Morphology of Flowering Plants		\checkmark		
147	4	Less water in the body stimulates the production of ADH.	Excretory products and Elimination		\checkmark		
148	4	Marchanita exhibits heterothallism.	Plant Kingdom		\checkmark		
149	4	Sporozoites of malarial parasite is seen in the saliva of infected female anopheles mosquito.	Human Health and Disease		\checkmark		
150	1	Cyanobacteria present in the corolloid roots of cycas.	Plant Kingdom		\checkmark		

151	2	Lowest reduction potential highest reducing power	Electrochemist $$
152	1	C_2 and C_3 atoms are sp hybridised	Basic Pinciples of organic √ chemistry
153	1	The reducing agent used in Clemmensen reduction is Zn – Hg and HCl	Aldehydes, ketones and carboxylic acids
154	4	$P_{N_2} = X_{N_2} .P$ = 0.5 × 1 = 0.5 atm	States of _V Matter
155	1	$\begin{array}{c} CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{3$	Alcohols, phenols and ethers

156	3	$\frac{x}{m} \alpha P_{T}$	Surface Chemistry		\checkmark		
157	1	$\Delta T_{f} = i \times K_{f} \times m$ $i = \frac{3.82 \times 142 \times 45}{1.86 \times 5 \times 1000}$ $= 2.63$	Solutions		\checkmark		
158	4	NO_2^- and NO_3^- are sp ² hybridised	Chemical Bonding		\checkmark		
159	4	Mn^{2+} has five unpaired electrons, H_2O is a weak field ligand	Co-ordination compounds	\checkmark			
160	2	Co ³⁺ is a stronger oxidizing agent than Mn ³⁺ Fe ³⁺ is a milder oxidizing agent Cr ²⁺ is strongly reducing	d- Block Elements			\checkmark	
161	2	For dissociation, $i > 1$ For association, $i < 1$	Solutions	\checkmark			
162	2	(+) Lactose is a reducing sugar and it exhibits mutarotation	Biomolecules		\checkmark		
163	3	$\Delta G^\circ = -nFE^\circ$ When E° is negative, then $\Delta G^\circ > 0$ $E^\circ = \frac{RT}{nF} lnK$ When E° is negative, then $K = 10^{-x}$ which is less than one.	Electrochemist ry		\checkmark		
164	1	Diphenyl hydramine (benadryl) is used as an antihistamine	Chemistry in everyday life		\checkmark		
165	1	Pig iron contain 4% carbon. It is the major impurity.	Metallurgy	\checkmark			
166	1	[Ni(CN) ₄] ²⁻ is diamagnetic	Co-ordination	\checkmark			
167	1	$\begin{array}{ccc} & & & & & & & & & & \\ & & & & & & & \\ Cu^{2+} + e^- \rightarrow Cu^+ & 0.15 & 0.15 & & \\ Cu^+ + e^- \rightarrow Cu & 0.50 & 0.50 & & \\ Cu^{2+} + 2e^- \rightarrow Cu & 0.325 & 0.65 & & \\ \end{array}$	Electrochemist	0	V	<i>.</i> 0.	
168	3	$\Delta S = \frac{\Delta H}{T} = \frac{30000}{300 \text{ K}} \text{ mol}^{-1} \text{ J} = 100 \text{ J mol}^{-1} \text{ K}^{-1}$	Thermodynami cs	V			
169	3	Order can also have fractional values	Kinetics				
170	4	C – H : 0.109 nm C = C : 0.134 nm C – O : 0.143 nm C – C : 0.154 nm	Basic concepts in organic chemistry				
171	2	BF ₃ is electron deficient	Equilibrium				
172	4	Terylene is a polyester	Polymers				
173	1	$pOH = pK_{b} + log \frac{[Salt]}{[Base]}$ = -[log 1.8 × 10 ⁻⁵ × 1.5] = -log 2.7 × 10 ⁻⁵ = 5 - 0.43 pH = 14 - (5 - 0.43) = 9.43	Equilibrium			\checkmark	
174	1	$E_{cell}^{0} = E_{ox}^{0} + E_{red}^{0}$ = 0.74 + 0.15 = 0.89 V	Electrochemist ry				

175	2	(A) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Amines		\checkmark		
176	2	In pyrosilicate only one oxygen atom is shared	p–Block elements		\checkmark		
177	4	4-Ethyl-3-propylhex-1-ene	Hydrocarbons		\checkmark		
178	4	Reduction of nitrobenzene with Zn/NH₄Cl (neutral medium) gives phenyl hydroxylamine	Amines				Not included in the present syllabus
179	2	For an adiabatic process, $q = 0$ and For free expansion, $w = 0 \therefore \Delta T = 0$	Thermodynami cs		\checkmark		
180	2	$\begin{array}{ll} 2H_{2(g)} \rightarrow 4H_{(g)} & \Delta H = 869.6 \text{ kJ} \\ H_{2(g)} \rightarrow 2H_{(g)} & \Delta H = 434.8 \text{ kJ} \end{array}$	Thermodynamics	V			
181	1	$\frac{t_A}{t_B} = \sqrt{\frac{M_A}{M_B}}$ $2 = \sqrt{\frac{49}{M_B}}$ $M_B = 12.25 \text{ u}$	States of Matter	0. Q	7	6	
182	2	They are co-ordination isomers	Co-ordination	\checkmark			
183	1	Zr & Ti are purified by van Arkel method	Metallurgy				
184	2	Reaction of alkyl halide with ammonia to form amine is a nucleophilic substitution reaction	Haloalkanes and haloarenes		\checkmark		
185	2	Cal ₂ is most covalent and has the lowest melting point.	Chemical bonding		\checkmark		
186	1	Maximum no. of electrons = $2n^2$ Maximum number of atomic orbitals = $n^2 = 16$	Atomic Structure	\checkmark			
187	1	CH ₃ OH (o-cresol) Phenolic group highly activates the benzene ring towards electrophilic substitution	Alcohols, phenols and ethers		\checkmark		
188	3	$\frac{V_1}{V_2} = \sqrt{\frac{T_1}{T_2}}$ $= \sqrt{2} = 1.4$	States of Matter				

189	1	$V_0 = \frac{700 \times 55 \times 273}{300 \times 760}$ ∴ % of N = $\frac{28 \times 700 \times 55 \times 273 \times 100}{22400 \times 0.35 \times 300 \times 760}$ = 16.45	Basic concepts of organic chemistry		\checkmark		
190	4	There are three geometrical isomers. The complex is square planar and is of the type [M(abcd)]	Co–ordination compounds		\checkmark		
191	1	1.0 molal aq. soln → 1.0 mole in 1000 g water ∴ Mole fraction of solute $= \frac{1}{1+55.5} = 0.0177$	Solutions		\checkmark		
192	3	Reaction is exothermic and the no. of moles of gaseous products is less than that of the reactants ∴ the forward reaction is favoured at high pressure and low temperature	Equilibrium	\checkmark			
193	4	Na_2S and NaCN, if present in the extract, will be decomposed to H_2S and HCN by HNO ₃ . These will escape from the solution and will not interfere with the test for halogens	Basic concepts of organic chemistry	\checkmark			
194	2	$N_{2} + O_{2} \rightleftharpoons 2NO \qquad K_{1}$ $2NO + O_{2} \rightleftharpoons 2NO_{2} \qquad K_{2}$ $N_{2} + 2O_{2} \rightleftharpoons 2NO_{2} \qquad K_{1} \times K_{2}$ $NO_{2} \oiint \frac{1}{2}N_{2} + O_{2} \qquad \left[\frac{1}{K_{1}K_{2}}\right]^{\frac{1}{2}}$	Equilibrium	•	\checkmark		
195	1	$\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1}$ $\frac{1}{2} = \frac{\lambda_2}{\lambda_1}$	Atomic Structure	100 V	3	Q.	
196	4	Minimum bond length \rightarrow Maximum bond order Bond order is the highest for O ₂ ⁺	Chemical Bonding				
197	4	$Cr_2O_7^{2-}$ is reduced to Cr^{3+}	d & f-block elements				
198	1	Growth of fish is inhibited if	Environmental		\checkmark		
199	4	6s, 4f, 5d, 6p	Atomic		\checkmark		
200	1	Ca(OCl) ₂ in bleaching powder releases chlorine	p–block elements		\checkmark		