
SECTION II DATA INTERPRETATION

Even Numbers : A number divisible by 2 is called an even number. e.g., 2, 4, 6, 8, 10, etc.
Odd Numbers : A number not divisible by 2 is called an odd number. e.g., 1, 3, 5, 7, 9, 11, etc.
Prime Numbers : A number greater than 1 is called a prime number, if it has exactly two factors, namely 1 and the number itself.
<i>Prime numbers upto 100</i> are : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
Prime numbers Greater than 100 : Let p be a given number greater than 100. To find out whether it is prime or not, we use the following method :
Find a whole number nearly greater than the square root of p . Let $k > \sqrt{p}$. Test whether p is divisible by any prime number less than k . If yes, then p is not prime. Otherwise, p is prime.
e.g., We have to find whether 191 is a prime number or not. Now, $14 > \sqrt{191}$.
Prime numbers less than 14 are 2, 3, 5, 7, 11, 13.
191 is not divisible by any of them. So, 191 is a prime number.
Composite Numbers : Numbers greater than 1 which are not prime, are known as composite numbers. <i>e.g.</i> , 4, 6, 8, 9, 10, 12.
Note: (i) 1 is neither prime nor composite.
(ii) 2 is the only even number which is prime.
(iii) There are 25 prime numbers between 1 and 100.
Co-primes : Two numbers a and b are said to be co-primes, if their H.C.F. is 1. e.g., $(2, 3)$, $(4, 5)$, $(7, 9)$, $(8, 11)$, etc. are co-primes.
STS OF DIVISIBILITY a mitheld a lo sufeviered to safe seal 1
Divisibility By 2 : A number is divisible by 2, if its unit's digit is any of 0, 2, 4, 6, 8.
Ex. 84932 is divisible by 2, while 65935 is not.
Divisibility By 3 : A number is divisible by 3, if the sum of its digits is divisible by 3.
Ex. 592482 is divisible by 3, since sum of its digits = $(5 + 9 + 2 + 4 + 8 + 2)$ = 30, which is divisible by 3.
But, 864329 is not divisible by 3, since sum of its digits = $(8 + 6 + 4 + 3 + 2 + 9)$ = 32, which is not divisible by 3.
Divisibility By 4 : A number is divisible by 4, if the number formed by the last wo digits is divisible by 4.
Ex. 892648 is divisible by 4, since the number formed by the last two digits is 8 , which is divisible by 4.
But, 749282 is not divisible by 4, since the number formed by the last two digits s 82, which is not divisible by 4.
Divisibility By 5 : A number is divisible by 5, if its unit's digit is either 0 or 5.
hus, 20820 and 50345 are divisible by 5, while 30934 and 40946 are not.
Divisibility By 6 : A number is divisible by 6, if it is divisible by both 2 and 3.
Cx. The number 35256 is clearly divisible by 2.
um of its digits = $(3 + 5 + 2 + 5 + 6) = 21$, which is divisible by 3.
hus, 35256 is divisible by 2 as well as 3. Hence, 35256 is divisible by 6.

J

6.	Divisibility By 8 : A number is divisible by 8, if the number formed by the last three digits of the given number is divisible by 8.
	Ex. 953360 is divisible by 8, since the number formed by last three digits is 360 which is divisible by 8.
	But, 529418 is not divisible by 8, since the number formed by last three digit is 418, which is not divisible by 8.
.7 78000	Divisibility By 9 : A number is divisible by 9, if the sum of its digits is divisible by 9.
upitean	Ex. 60732 is divisible by 9, since sum of digits = $(6 + 0 + 7 + 3 + 2) = 18$, whice is divisible by 9.
	But, 68956 is not divisible by 9, since sum of digits = $(6 + 8 + 9 + 5 + 6) = 34$ which is not divisible by 9.
8.	Divisibility By 10 : A number is divisible by 10, if it ends with 0. Ex. 96410, 10480 are divisible by 10, while 96375 is not.
9.	Divisibility By 11 : A number is divisible by 11, if the difference of the sum of its digits at odd places and the sum of its digits at even places, is either 0 of a number divisible by 11.
	Ex. The number 4832718 is divisible by 11, since :
	(sum of digits at odd places) - (sum of digits at even places)
	= (8 + 7 + 3 + 4) - (1 + 2 + 8) = 11, which is divisible by 11.
10.	Divisibility By 12 : A number is divisible by 12, if it is divisible by both 4 and 3.
	Ex. Consider the number 34632.
	(i) The number formed by last two digits is 32, which is divisible by 4.
	(<i>ii</i>) Sum of digits = $(3 + 4 + 6 + 3 + 2) = 18$, which is divisible by 3.
	Thus, 34632 is divisible by 4 as well as 3. Hence, 34632 is divisible by 12.
11.	Divisibility By 14 : A number is divisible by 14, if it is divisible by 2 as we as 7.
12.	Divisibility By 15 : A number is divisible by 15, if it is divisible by both 3 ar 5.
13.	Divisibility By 16 : A number is divisible by 16, if the number formed by the la 4 digits is divisible by 16.
(neAPL) a + 2d	Ex. 7957536 is divisible by 16, since the number formed by the last four digitis 7536, which is divisible by 16.
	Divisibility By 24 : A given number is divisible by 24, if it is divisible by bot 3 and 8.
	Divisibility By 40 : A given number is divisible by 40, if it is divisible by bot 5 and 8.
16.	Divisibility By 80 : A given number is divisible by 80, if it is divisible by bot 5 and 16.
	Note : If a number is divisible by p as well as q , where p and q are co-prime then the given number is divisible by pq .
	If p and q are not co-primes, then the given number need not be divisible by p even when it is divisible by both p and q .
	Ex. 36 is divisible by both 4 and 6, but it is not divisible by $(4 \times 6) = 24$, sin 4 and 6 are not co-primes.

6 Quantitative Aptitude VI. MULTIPLICATION BY SHORT CUT METHODS 1. Multiplication By Distributive Law: (i) $a \times (b + c) = a \times b + a \times c$ (ii) $a \times (b - c) = a \times b - a \times c$. **Ex.** (i) $567958 \times 99999 = 567958 \times (100000 - 1)$ = 567958 × 100000 - 567958 × 1 =(56795800000 - 567958) = 56795232042.(*ii*) $978 \times 184 + 978 \times 816 = 978 \times (184 + 816) = 978 \times 1000 = 978000$. 2. Multiplication of a Number By 5^n : Put n zeros to the right of the multiplicand and divide the number so formed by 2^n . **Ex.** $975436 \times 625 = 975436 \times 5^4 = \frac{9754360000}{1000} = 609647500.$ which is not divisible by 9.61 VII. BASIC FORMULAE of years addition at redmin A : 01 years and addition 1. $(a + b)^2 = a^2 + b^2 + 2ab$ 2. $(a - b)^2 = a^2 + b^2 - 2ab$ 3. $(a + b)^2 - (a - b)^2 = 4ab$ 4. $(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$ 5. $(a^2 - b^2) = (a + b) (a - b)$ if to must out but sould be a single strain strain at 6. $(a + b + c)^2 = a^2 + b^2 + c^2 + 2 (ab + bc + ca)$ vd aldiabyb reduce a 7. $(a^3 + b^3) = (a + b) (a^2 - ab + b^2)$ 8. $(a^3 - b^3) = (a - b) (a^2 + ab + b^2)$ 9. $(a^3 + b^3 + c^3 - 3abc) = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$ 10. If a + b + c = 0, then $a^3 + b^3 + c^3 = 3abc + 1 - (1 + 3 + 7 + 3) = 3abc + 1 + 3abc + 3abc$ VIII. DIVISION ALGORITHM OR EUCLIDEAN ALGORITHM If we divide a given number by another number, then : Dividend = (Divisor × Quotient) + Remainder IX. (i) $(x^n - a^n)$ is divisible by (x - a) for all values of n. (ii) $(x^n - a^n)$ is divisible by (x + a) for all even values of n. (*iii*) $(x^n + a^n)$ is divisible by (x + a) for all odd values of n. X. PROGRESSION A succession of numbers formed and arranged in a definite order according to certain definite rule, is called a progression. 1. Arithmetic Progression (A.P.) : If each term of a progression differs from its preceding term by a constant, then such a progression is called an arithmetical progression. This constant difference is called the common difference of the A.P. An A.P. with first term a and common difference d is given by a, (a + d), (a + 2d), $(a + 3d), \dots$ The *n*th term of this A.P. is given by $T_n = a (n - 1) d$. The sum of n terms of this A.P. $S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2}$ (first term + last term). SOME IMPORTANT RESULTS : (i) $(1+2+3+...+n) = \frac{n(n+1)}{2}$. (*ii*) $(1^2 + 2^2 + 3^2 + ... + n^2) = \frac{n(n+1)(2n+1)}{(2n+1)}$ 6 (*iii*) $(1^3 + 2^3 + 3^3 + ... + n^3) = \frac{n^2 (n+1)^2}{n^2 (n+1)^2}$.

F

NULLINGIS Geometrical Progression (G.P.) : A progression of numbers in which every term 2. bears a constant ratio with its preceding term, is called a geometrical progression. The constant ratio is called the common ratio of the G.P. A G.P. with first term a and common ratio r is : $a, ar, ar^2, ar^3,$ In this G.P. $T_n = ar^{n-1}$. Sum of the *n* terms, $S_n = \frac{a(1-r^n)}{(1-r^n)}$ OBJECTIVE ENERAL ENGL FOR COMPETITIONS - R.S. Aggarwal obedaa – 000000 Vikas Aggarwal An ideal book for Bank P.O., S.B.I.P.O., R.B.I., M.A.T., Hotel Management, C.B.I., L.I.C.A.A.O., G.I.C.A.A.O., U.T.I., Section Officers, Railways, N.D.A., C.D.S. and Ex. 6. Simplify : (i) 1605 × 1605 - (ii) 1398 × 1393 Over 10,000 questions on Comprehension, Sentence and Passage Completion, Synonyms, Antonyms, Rearrangement, Spotting Errors, Sentence Correction, Idioms and Phrases, One-word Substitution etc. Previous years' questions included. *

8 Quantitative Aptitude SOLVED EXAMPLES Ex. 1. Simplify: (i) 8888 + 888 + 88 + 8 (B.S.R.B. 1998) (ii) 11992 - 7823 - 456 (Bank Exam, 2003) Sol. (i)8888 (ii) 11992 - 7823 - 456 = 11992 - (7823 + 456)888 = 11992 - 8279 = 3713.88 7823 11992 8 456 8279 9872 8279 3713 Ex. 2. What value will replace the question mark in each of the following equations? (i)? - 1936248 = 1635773 (ii) 8597 - ? = 7429 - 4358 (Bank P.O. 2000) (i) Let x - 1936248 = 1635773. Then, x = 1635773 + 1936248 = 3572021. Sol. (*ii*) Let 8597 - x = 7429 - 4358. Then, x = (8597 + 4358) - 7429 = 12955 - 7429 = 5526. Ex. 3. What could be the maximum value of Q in the following equation ? 5P9 + 3R7 + 2Q8 = 1114(Bank P.O. 1999) Sol. We may analyse the given equation as shown : (1)(2)Clearly, 2 + P + R + Q = 11. 5 Ρ 9 So, the maximum value of Q can be 3 R 7 (11 - 2) i.e., 9 (when P = 0, R = 0). 2 Q 8 Ex. 4. Simplify : (i) 5793405 × 9999 (ii) 839478 × 625 11 1 4 $(i) \ 5793405 \times 9999 = 5793405 \ (10000 - 1) = 57934050000 - 5793405 = 57928256595.$ Sol. (*ii*) $839478 \times 625 = 839478 \times 5^4 = \frac{8394780000}{10} = 524673750.$ 16 Ex. 5. Evaluate : (i) $986 \times 137 + 986 \times 863$ (ii) $983 \times 207 - 983 \times 107$ **Sol.** (i) $986 \times 137 + 986 \times 863 = 986 \times (137 + 863) = 986 \times 1000 = 986000$. (*ii*) $983 \times 207 - 983 \times 107 = 983 \times (207 - 107) = 983 \times 100 = 98300$. Ex. 6. Simplify : (i) 1605×1605 (ii) 1398×1398 **Sol.** (i) $1605 \times 1605 = (1605)^2 = (1600 + 5)^2 = (1600)^2 + (5)^2 + 2 \times 1600 \times 5$ = 2560000 + 25 + 16000 = 2576025.(ii) $1398 \times 1398 = (1398)^2 = (1400 - 2)^2 = (1400)^2 + (2)^2 - 2 \times 1400 \times 2$ = 1960000 + 4 - 5600 = 1954404.Ex. 7. Evaluate : (313 × 313 + 287 × 287). $(a^2 + b^2) = \frac{1}{2} \left[(a + b)^2 + (a - b)^2 \right]$ Sol. $(313)^2 + (287)^2 = \frac{1}{2} \left[(313 + 287)^2 + (313 - 287)^2 \right] = \frac{1}{2} \left[(600)^2 + (26)^2 \right]$... $= \frac{1}{2} \left(360000 + 676 \right) = 180338.$ Ex. 8. Which of the following are prime numbers ? (i) 241(ii) 337 (iii) 391 (iv) 571 (i) Clearly, $16 > \sqrt{241}$. Prime numbers less than 16 are 2, 3, 5, 7, 11, 13. Sol. 241 is not divisible by any one of them. .**·**. 241 is a prime number.

(ii) Clearly, $19 > \sqrt{337}$ Prime numbers less than 19 are 2, 3, 5, 7, 11, 13, 17. 337 is not divisible by any one of them. 337 is a prime number. (iii) Clearly, $20 > \sqrt{391}$. Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. We find that 391 is divisible by 17. 391 is not prime. (iv) Clearly, $24 > \sqrt{571}$. Prime numbers less than 24 are 2, 3, 5, 7, 11, 13, 17, 19, 23. 571 is not divisible by any one of them. 571 is not divisible by any one of them. 572 is gives unit digit 1. 7785 gives unit digit 6. (4) ¹⁰² gives unit digit 6. (4) ¹⁰² gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰⁴ $\times (7)^5 \times (11)^2 = (2\times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2$. Total number of prime factors in the expression (4) ¹¹ $\times (7)^5 \times (11)^2$. (3) (4) ¹¹ $\times (7)^5 \times (11)^2 = (2\times 2)^{11} \times (7)^5 \times (11)^2 = 2^{21} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2$. Total number of prime factors = $(22 + 5 + 2) = 29$. Ex. 12. Simplify : (i) 896 $\times 896 - 204 \times 204$ (ii) 897 $\times 387 + 114 \times 114 + 2 \times 387 \times 114$ (iii) 81 $\times 81 + 68 \times 68 - 2 \times 81 \times 68$. Sol. (i) Given exp. $= (887^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387, b = 114$ $= (a + b)^2 = (387^2 + 114)^2 = (501)^2 = 251001$. (ii) Given exp. $= (81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81, b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5507013 Sol. (i) Sum of digits in 541326 $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisibl	alertori vi	(<i>ii</i>) Clearly, $19 > \sqrt{337}$. Prime numbers less than 19 are 2, 3, 5, 7, 11, 13, 17.
337 is a prime number. (iii) Clearly, 20 > √391. Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. We find that 391 is divisible by 17. 391 is not prime. (iv) Clearly, 24 > √571. Prime numbers less than 24 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 571 is not divisible by any one of them. 571 is a prime number. Ex. 9. Find the unit's digit in the product (2467) ¹⁵³ × (341) ⁷² . Sol. Clearly, unit's digit in the product (2467) ¹⁵³ × (341) ⁷² . Sol. Clearly, unit's digit in the product (2467) ¹⁶³ × (341) ⁷² . Now, 7 ⁴ gives unit digit 1. 7 ¹⁵³ gives unit digit 1. 7 ¹⁵⁵ gives unit digit 1. 7 ¹⁵⁵ gives unit digit 1. 7 ¹⁵⁵ gives unit digit 1. 7 ¹⁵⁶ gives unit digit 1. 7 ¹⁵⁷ gives unit digit 6. (4) ¹⁰⁰ gives unit digit 10 (264) ¹⁰² + (264) ¹⁰³ = unit's digit in (6 + 4) = 0. Ex. 10. Find the total number of prime factors in the expression (4) ¹¹¹ × (7) ⁵ × (11) ² . Sol. (4) ¹¹¹ × (7) ⁵ × (11) ² = (2 × 2) ¹¹ × (7) ⁵ × (11) ² = 2 ¹¹¹ × 2 ¹¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . 7. Total number of prime factors = (22 + 5 + 2) = 29. Ex. 12. Simplify : (1) 896 × 896 - 204 × 204 (ii) 387 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 387 + 88 × 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = (387) ² + (114) ² + 2× 387 × 114 (iii) 81 × 387 + 281 + 468 × 68 - 22 × 81 × 68 Sol. (i) Given exp. = (387) ² + (114) ² + 2× 387 × 114 (iii) Given exp. = (387) ² + (114) ² = (501) ² = 251001. (ii) Given exp. = (387) ² + (114) ² = (367 + 114) ² = (501) ² = 251001. (ii) Given exp. = (387) ² + (114) ² = 261) ² = 169. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is not divisible by 3. Hence, 541326 is divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits 1 (1 + 9 + 7 + x + 5 + 4 + 6	aletto d'un A	557 IS HOL UNISIDIE by any one of month
(iii) Clearly, 20 > $\sqrt{391}$. Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. We find that 391 is divisible by 17. 391 is not prime. (ii) Clearly, 24 > $\sqrt{571}$. Prime numbers less than 24 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 571 is a prime number. Ex. 9. Find the unit's digit in the product (2467) ¹⁵³ × (341) ⁷² . Sol. Clearly, unit's digit in the group product = unit's digit in 7 ¹⁵³ × 1 ⁷² . Now, 7 ⁴ gives unit digit 1. 7 ¹⁵⁵ gives unit digit 1. 7 ¹⁵⁵ gives unit digit 1. 7 ¹⁵⁵ gives unit digit 1. 7 ¹⁵⁷ gives unit digit 1. 7 ¹⁵⁸ gives unit digit 1. 7 ¹⁵⁸ gives unit digit 1. 7 ¹⁵⁹ gives unit digit 1. 7 ¹⁵⁹ gives unit digit 1. 7 ¹⁵⁹ gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰⁴ gives unit digit 6. (4) ¹⁰⁴ gives unit digit 6. (4) ¹¹⁴ × (7 ⁵ × (11) ² = (2 × 2) ¹¹ × (7 ⁵ × (11) ² = 2 ¹¹ × 2 ¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . Not, 4 ⁴ gives unit digit 7. Ex. 10. Find the total number of prime factors in the expression (4) ¹¹ × (7 ⁵ × (11) ² = (2 × 2) ¹¹ × (7 ⁵ × (11) ² = 2 ¹¹ × 2 ¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . Total number of prime factors = (22 + 5 + 2) = 29. Ex. 12. Simplify : (i) 896 × 896 - 204 × 204 (ii) 387 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 - 2 × 81 × 68. Sol. (i) Given exp. = (896) ² - (204) ² = (896 + 204) (896 - 204) = 1100 × 692 = 761200. (i) Given exp. = (387) ² + (114) ² + 2 × 387 × 114 $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001.$ (ii) Given exp. = (81) ² + (68) ² - 2 × 81 × 68 = $a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.$ Ex. 13. Which of the following numbers is divisible by 3 ? (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is not divisible by 3. (ii) Sum of digits in 541326 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. (ii) Sum of digits in 541326 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is		337 is a prime number.
 (i) Clearly, 24 > √571. Prime numbers less than 24 are 2, 3, 5, 7, 11, 13, 17, 19, 23. 571 is not divisible by any one of them. 571 is a prime number. Ex. 9. Find the unit's digit in the product (2467)¹⁵³ × (341)⁷². Sol. Clearly, unit's digit in the given product = unit's digit in 7¹⁵³ × 1⁷². Now, 7⁴ gives unit digit (1 × 7) = 7. Also, 1⁷² gives unit digit 1. Hence, unit's digit in the product = (7 × 1) = 7. Ex. 10. Find the unit's digit in (264)¹⁰² + (264)¹⁰³ (S.S.C. 1999) Sol. Required unit's digit = unit's digit in (4)¹⁰³ + (4)¹⁰³. Now, 4² gives unit digit 6. (4)¹⁰³ gives unit digit 6. (4)¹⁰³ gives unit digit of the product (6 × 4) i.e., 4. Hence, unit's digit in (264)¹⁰² + (264)¹⁰³ = unit's digit in (6 + 4) = 0. Ex. 11. Find the total number of prime factors in the expression (4)¹¹¹ × (7)⁵ × (11)². Sol. (4)¹¹¹ × (7)⁵ × (11)² = (2 × 2)¹¹¹ × (7)⁵ × (11)² = 2²¹ × 7⁵ × 11². Total number of prime factors = (22 + 5 + 2) = 29. Ex. 12. Simplify: (i) 896 × 896 - 204 × 204 (ii) 387 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 + 2 × 81 × 68 Sol. (i) Given exp. = (387)² + (114)² + 2 × 387 × 114 = (a + b)² = (387)² + (114)² = (501)² = 251001. (ii) Given exp. = (81)² + (68)² - 2 × 81 × 68 = a² + b² - 2ab, where a = 81, b = 68 = (a - b)² = (81 - 68)² = (13)² = 169. Ex. 13. Which of the following numbers is divisible by 3? (i) 541326 (ii) 5987013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is not divisible by 3. Hence, 5867013 is not divisible by 3. (ii) Sum of digits in 541326 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9. Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x). To		(iii) Clearly, $20 > \sqrt{391}$. Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. We find that 391 is divisible by 17.
571 is not divisible by any one of them. . 571 is a prime number. Ex. 9. Find the unit's digit in the product $(2467)^{153} \times (341)^{72}$. Sol. Clearly, unit's digit in the given product = unit's digit in $7^{153} \times 1^{72}$. Now, 7 ⁴ gives unit digit (1 × 7) = 7. Also, 1 ⁷² gives unit digit 1. Hence, unit's digit in the product = (7 × 1) = 7. Ex. 10. Find the unit's digit in $(264)^{102} + (264)^{103}$. Now, 4 ² gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit 10 (264) ¹⁰² + (264)^{103}. Now, 4 ² gives unit digit 6. (4) ¹⁰³ gives unit digit 10 (264) ¹⁰² + (264)^{103}. Now, 4 ² gives unit digit 10 (264) ¹⁰² + (264)^{103}. Now, 4 ² gives unit digit 10 (264) ¹⁰² + (264) ¹⁰³ unit's digit in (6 + 4) = 0. Ex. 11. Find the total number of prime factors in the expression (4) ¹¹ × (7) ⁵ × (11) ² . Sol. (4) ¹¹ × (7) ⁵ × (11) ² = (2 × 2) ¹¹ × (7) ⁵ × (11) ² = 2 ¹¹ × 2 ¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . Notal number of prime factors = (22 + 5 + 2) = 29. Ex. 12. Simplify: (1) 896 × 896 - 204 × 204 (ii) 387 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = (886) ² - (204) ² = (896 + 204) (896 - 204) = 1100 × 692 = 761200. (ii) Given exp. = (817) ² + (114) ² + 2 × 387 × 114 $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001.$ (iii) Given exp. = (81) ² + (68) ² - 2 × 81 × 68 = a ² + b ² - 2ab, where a = 81, b = 68 $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.$ Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 55967013 Sol. (ii) Sum of digits in 56967013 = (6 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit b x. Sum of di		UST IS NOT PILLIO
Ex. 9. Find the unit's digit in the product $(2467)^{153} \times (341)^{172}$. Sol. Clearly, unit's digit in the given product = unit's digit in $7^{153} \times 1^{72}$. Now, 7 ⁴ gives unit digit 1. . 7 ¹⁵² gives unit digit 1. . 7 ¹⁵³ gives unit digit (1×7) = 7. Also, 1^{72} gives unit digit 1. Hence, unit's digit in the product = $(7 \times 1) = 7$. Ex. 10. Find the unit's digit = unit's digit in $(4)^{102} + (264)^{103}$. Sol. Required unit's digit = unit's digit in $(4)^{102} + (4)^{103}$. Now, 4^2 gives unit digit 6. . $(4)^{102}$ gives unit digit 6. . $(4)^{102}$ gives unit digit 6. . $(4)^{103}$ gives unit digit 6. . $(4)^{103}$ gives unit digit $(264)^{102} + (264)^{103} = unit's digit in (6 + 4) = 0.Ex. 11. Find the total number of prime factors in the expression (4)^{11} \times (7)^5 \times (11)^2.Sol. (4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2.. Total number of prime factors = (22 + 5 + 2) = 29.Ex. 12. Simplify : (i) 386 \times 386 - 204 \times 204(ii) 387 \times 387 + 114 \times 114 + 2 \times 387 \times 114(iii) 81 \times 81 + 68 \times 68 - 2 \times 81 \times 68Sol. (i) Civen exp. = (896)^2 - (204)^2 = (896 + 204)(896 - 204) = 1100 \times 692 = 761200.(ii) Given exp. = (887)^2 + (114)^2 + 2 \times 387 \times 114= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001.(iii) Given exp. = (81)^2 + (68)^2 - 2x 81 \times 68 = a^2 + b^2 - 2ab, where a = 81, b = 68= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.Ex. 13. Which of the following numbers is divisible by 3 ?(i) 541326 (ii) 5967013Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3.Hence, 5967013 is not divisible by 3.Ex. 14. What least value must be assigned to * so that the number 197*5462 isdivisible by 9 ?Sol. Let the missing digit be x.Sum of digits (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x).For (34 + x) to be divisible by 9, x must be replaced by 2.$		571 is not divisible by any one of them.
Sol. Clearly, unit's digit in the given product = unit's digit in $1^{1-4} \times 1^{-5}$. Now, 7^4 gives unit digit 1. 7^{152} gives unit digit 1. 7^{153} gives unit digit 1. 8^{10} Find the unit's digit in $(264)^{102} + (264)^{103}$. Now, 4^2 gives unit digit 6. $(4)^{102}$ gives unit digit 6. $(4)^{103}$ gives unit digit 6. $(4)^{103}$ gives unit digit 1. $(24)^{102} + (264)^{103} = unit's digit in (6 + 4) = 0.Ex. 11. Find the total number of prime factors in the expression (4)^{11} \times (7)^5 \times (11)^2.Sol. (4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2.7^{153} Total number of prime factors = (22 + 5 + 2) = 29.Ex. 12. Simplify: (i) 896 \times 896 - 204 \times 204(ii) 817 \times 387 + 114 \times 114 + 2 \times 387 \times 114(iii) 81 \times 81 + 68 \times 68 - 2 \times 81 \times 68Sol. (i) Civen exp. = (896)^2 - (204)^2 = (896 + 204)(896 - 204) = 1100 \times 692 = 761200.(ii) Civen exp. = (887)^2 + (114)^2 + 2 \times 387 \times 114= a^2 + b^2 + 2ab, where a = 387, b = 114= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001.(iii) Given exp. = (81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab, where a = 81, b = 68= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.Ex. 13. Which of the following numbers is divisible by 3 ?(i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. (ii) Sum of digits in 5467013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. (ii) Sum of digits in 1967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Ex. 14. What least value must be assigned to $*$ so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits $= (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For (34 + x) to be divisible by 9, x must be replaced by 2.		571 is a prime number.
Now, 7 ⁴ gives unit digit 1. . 7^{152} gives unit digit (1 × 7) = 7. Also, 1^{72} gives unit digit 1. Hence, unit's digit in the product = (7 × 1) = 7. Ex. 10. Find the unit's digit in (264) ¹⁰² + (264) ¹⁰³ . Now, 4 ² gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit of the product (6 × 4) <i>i.e.</i> , 4. Hence, unit's digit in (264) ¹⁰² + (264) ¹⁰³ = unit's digit in (6 + 4) = 0. Ex. 11. Find the total number of prime factors in the expression (4) ¹¹ × (7) ⁵ × (11) ² . Sol. (4) ¹¹¹ × (7) ⁵ × (11) ² = (2 × 2) ¹¹ × (7) ⁵ × (12) ² = 2 ¹¹ × 2 ¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . . Total number of prime factors = (22 + 5 + 2) = 29. Ex. 12. Simplify : (i) 896 × 896 - 204 × 204 (ii) 87 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = (896) ² - (204) ² = (896 + 204) (896 - 204) = 1100 × 692 = 761200. (ii) Given exp. = (896) ² - (204) ² = (896 + 204) (896 - 204) = 1100 × 692 = 761200. (ii) Given exp. = (81) ² + (114) ² + 2 × 387 × 114 $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001.$ (iii) Given exp. = (81) ² + (68) ² - 2 × 81 × 68 = a ² + b ² - 2ab, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.$ Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2.	Ex. 9.	Find the unit's digit in the given product $(2407)^{-1} \times (041)^{-1}$.
∴ 7 ¹⁵³ gives unit digit 1. ∴ 7 ¹⁵³ gives unit digit (1 × 7) = 7. Also, 1 ⁷² gives unit digit 1. Hence, unit's digit in the product = (7 × 1) = 7. Ex. 10. Find the unit's digit in (264) ¹⁰² + (264) ¹⁰³ . (S.S.C. 1999) Sol. Required unit's digit = unit's digit in (4) ¹⁰² + (4) ¹⁰³ . Now, 4 ² gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰⁴ gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰⁴ gives unit digit 6. (4) ¹⁰⁵ gives unit digit 10 (264) ¹⁰² + (264) ¹⁰³ = unit's digit in (6 + 4) = 0. Ex. 11. Find the total number of prime factors in the expression (4) ¹¹ × (7) ⁵ × (11) ² . Sol. (4) ¹¹¹ × (7) ⁵ × (11) ² = (2 × 2) ¹¹ × (7) ⁵ × (11) ² = 2 ¹¹ × 2 ¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . ∴ Total number of prime factors (22 + 5 + 2) = 29. Ex. 12. Simplify: (i) 896 × 896 - 204 × 204 (ii) 81 × 81 + 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = (896) ² - (204) ² = (886 + 204) (896 - 204) = 1100 × 692 = 761200. (ii) Given exp. = (887) ² + (114) ² + 2 × 387 × 114 = a ² + b ² + 2ab, where a = 387, b = 114 = (a + b) ² = (387 + 114) ² = (501) ² = 251001. (iii) Given exp. = (81) ² + (68) ² - 2 × 81 × 68 = a ² + b ² - 2ab, where a = 81, b = 68 = (a - b) ² = (81 - 68) ² = (13) ² = 169. Ex. 13. Which of the following numbers is divisible by 3? (i) 541326 (ii) 5967013 Sol. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5947013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). Fo		
∴ 7^{153} gives unit digit $(1 \times 7) = 7$. Also, 1^{72} gives unit digit 1. Hence, unit's digit in the product = $(7 \times 1) = 7$. Ex. 10. Find the unit's digit in $(264)^{102} + (264)^{103}$. (S.S.C. 1999) Sol. Required unit's digit = unit's digit in $(4)^{102} + (4)^{103}$. Now, 4^2 gives unit digit 6. $(4)^{100}$ gives unit digit 6. $(4)^{103}$ gives unit digit of the product (6×4) <i>i.e.</i> , 4. Hence, unit's digit in $(264)^{102} + (264)^{103} =$ unit's digit in $(6 + 4) = 0$. Ex. 11. Find the total number of prime factors in the expression $(4)^{11} \times (7)^5 \times (11)^2$. Sol. $(4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2$. ∴ Total number of prime factors = $(22 + 5 + 2) = 29$. Ex. 12. Simplify: (i) $896 \times 896 - 204 \times 204$ (ii) $81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$ Sol. (i) Given exp. = $(896)^2 - (204)^2 = (896 + 204) (896 - 204) = 1100 \times 692 = 761200$. (ii) Given exp. = $(896)^2 - (204)^2 = (896 + 204) (896 - 204) = 1100 \times 692 = 761200$. (iii) Given exp. = $(897)^2 + (114)^2 + 2 \times 387 \times 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 5967013 is not divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	ireinibhe by	7152 gives unit digit 1
Hence, unit's digit in the product = $(7 \times 1) = 7$. Ex. 10. Find the unit's digit in $(264)^{102} + (264)^{103}$. (S.S.C. 1999) Sol. Required unit's digit = unit's digit in $(4)^{102} + (4)^{103}$. Now, 4^2 gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit 6 the product (6×4) <i>i.e.</i> , 4. Hence, unit's digit in $(264)^{102} + (264)^{103} =$ unit's digit in $(6 + 4) = 0$. Ex. 11. Find the total number of prime factors in the expression $(4)^{11} \times (7)^5 \times (11)^2$. Sol. $(4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2$. Total number of prime factors = $(22 + 5 + 2) = 29$. Ex. 12. Simplify: (i) $896 \times 896 - 204 \times 204$ (ii) $387 \times 387 + 114 \times 114 + 2 \times 387 \times 114$ (iii) $81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$ Sol. (i) Given exp. = $(896)^2 - (204)^2 = (896 + 204) (896 - 204) = 1100 \times 692 = 761200$. (ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 5967013 is not divisible by 3. (ii) Sum of digits in 5987013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.		7153 gives unit digit $(1 \times 7) = 7$. Also, 1^{72} gives unit digit 1.
Ex. 10. Find the unit's digit in $(264)^{102} + (264)^{103}$. (S.S.C. 1999) Sol. Required unit's digit = unit's digit in $(4)^{102} + (4)^{103}$. Now, 4^2 gives unit digit 6. (4) ¹⁰² gives unit digit of the product (6×4) <i>i.e.</i> , 4. Hence, unit's digit in $(264)^{102} + (264)^{103} =$ unit's digit in $(6 + 4) = 0$. Ex. 11. Find the total number of prime factors in the expression $(4)^{11} \times (75 \times (11)^2)$. Sol. $(4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2$. \therefore Total number of prime factors = $(22 + 5 + 2) = 29$. Ex. 12. Simplify: (i) $896 \times 896 - 204 \times 204$ (ii) $387 \times 387 + 114 \times 114 + 2 \times 387 \times 114$ (iii) $81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$ Sol. (i) Given exp. = $(896)^2 - (204)^2 = (896 + 204) (896 - 204) = 1100 \times 692 = 761200$. (ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.		T_{1} and T_{2} which is the product $-(7 \times 1) = 7$
Sol. Required unit's digit = unit's digit in (4) ¹⁰² + (4) ¹⁰² . Now, 4 ² gives unit digit 6. (4) ¹⁰² gives unit digit of the product (6 × 4) <i>i.e.</i> , 4. Hence, unit's digit in (264) ¹⁰² + (264) ¹⁰³ = unit's digit in (6 + 4) = 0. Ex. 11. Find the total number of prime factors in the expression (4) ¹¹ × (7) ⁵ × (11) ² . Sol. (4) ¹¹ × (7) ⁵ × (11) ² = (2 × 2) ¹¹ × (7) ⁵ × (11) ² = 2 ¹¹ × 2 ¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . ∴ Total number of prime factors = (22 + 5 + 2) = 29. Ex. 12. Simplify : (i) 896 × 896 - 204 × 204 (ii) 387 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = (896) ² - (204) ² = (896 + 204) (896 - 204) = 1100 × 692 = 761200. (ii) Given exp. = (387) ² + (114) ² + 2 × 387 × 114 = a ² + b ² + 2ab, where a = 387, b = 114 = (a + b) ² = (387 + 114) ² = (501) ² = 251001. (iii) Given exp. = (81) ² + (68) ² - 2 × 81 × 68 = a ² + b ² - 2ab, where a = 81, b = 68 = (a - b) ² = (81 - 68) ² = (13) ² = 169. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2.		(S.S.C. 1999)
Now, 4 ² gives unit digit 6. (4) ¹⁰³ gives unit digit 6. (4) ¹⁰³ gives unit digit in (264) ¹⁰² + (264) ¹⁰³ = unit's digit in (6 + 4) = 0. Ex. 11. Find the total number of prime factors in the expression (4) ¹¹ × (7) ⁵ × (11) ² . Sol. (4) ¹¹ × (7) ⁵ × (11) ² = (2 × 2) ¹¹ × (7) ⁵ × (11) ² = 2 ¹¹ × 2 ¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . ∴ Total number of prime factors = (22 + 5 + 2) = 29. Ex. 12. Simplify: (i) 896 × 896 - 204 × 204 (ii) 387 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = (896) ² - (204) ² = (896 + 204) (896 - 204) = 1100 × 692 = 761200. (ii) Given exp. = (387) ² + (114) ² + 2 × 387 × 114 = a ² + b ² + 2ab, where a = 387, b = 114 = (a + b) ² = (387 + 114) ² = (501) ² = 251001. (iii) Given exp. = (81) ² + (68) ² - 2 × 81 × 68 = a ² + b ² - 2ab, where a = 81, b = 68 = (a - b) ² = (81 - 68) ² = (13) ² = 169. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 5967013 is not divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2.	Sol.	Required unit's digit = unit's digit in $(4)^{102} + (4)^{103}$.
∴ (4) ¹⁰² gives unit digit 6. (4) ¹⁰³ gives unit digit of the product (6 × 4) <i>i.e.</i> , 4. Hence, unit's digit in (264) ¹⁰² + (264) ¹⁰³ = unit's digit in (6 + 4) = 0. Ex. 11. Find the total number of prime factors in the expression (4) ¹¹ × (7) ⁵ × (11) ² . Sol. (4) ¹¹ × (7) ⁵ × (11) ² = (2 × 2) ¹¹ × (7) ⁵ × (11) ² = 2 ¹¹ × 2 ¹¹ × 7 ⁵ × 11 ² = 2 ²² × 7 ⁵ × 11 ² . ∴ Total number of prime factors = (22 + 5 + 2) = 29. Ex. 12. Simplify: (i) 896 × 896 - 204 × 204 (ii) 887 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = (896) ² - (204) ² = (896 + 204) (896 - 204) = 1100 × 692 = 761200. (ii) Given exp. = (387) ² + (114) ² + 2 × 387 × 114 = a ² + b ² + 2ab, where a = 387, b = 114 = (a + b) ² = (387 + 114) ² = (501) ² = 251001. (iii) Given exp. = (81) ² + (68) ² - 2 × 81 × 68 = a ² + b ² - 2ab, where a = 81, b = 68 = (a - b) ² = (81 - 68) ² = (13) ² = 169. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Lex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2.		
Hence, unit's digit in $(254)^{162} + (264)^{162} = dift's digit in (3+1)^{11} \times (7)^5 \times (11)^2.Ex. 11. Find the total number of prime factors in the expression (4)^{11} \times (7)^5 \times (11)^2Sol. (4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2.Total number of prime factors = (22 + 5 + 2) = 29.Ex. 12. Simplify: (i) 896 \times 896 - 204 \times 204(ii) 387 \times 387 + 114 \times 114 + 2 \times 387 \times 114(iii) 81 \times 81 + 68 \times 68 - 2 \times 81 \times 68Sol. (i) Given exp. = (896)^2 - (204)^2 = (896 + 204) (896 - 204) = 1100 \times 692 = 761200.(ii) Given exp. = (387)^2 + (114)^2 + 2 \times 387 \times 114= a^2 + b^2 + 2ab, where a = 387, b = 114= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001.(iii) Given exp. = (81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab, where a = 81, b = 68= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.Ex. 13. Which of the following numbers is divisible by 3 ?(i) 541326 (ii) 5967013Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3.Hence, 541326 is divisible by 3.(ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3.Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ?Sol. Let the missing digit be x.Sum of digits (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x).For (34 + x) to be divisible by 9, x must be replaced by 2.$		(4) ¹⁰² gives unit digit 6.
Hence, unit's digit in $(254)^{162} + (264)^{162} = dift's digit in (3+1)^{11} \times (7)^5 \times (11)^2.Ex. 11. Find the total number of prime factors in the expression (4)^{11} \times (7)^5 \times (11)^2Sol. (4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2.Total number of prime factors = (22 + 5 + 2) = 29.Ex. 12. Simplify: (i) 896 \times 896 - 204 \times 204(ii) 387 \times 387 + 114 \times 114 + 2 \times 387 \times 114(iii) 81 \times 81 + 68 \times 68 - 2 \times 81 \times 68Sol. (i) Given exp. = (896)^2 - (204)^2 = (896 + 204) (896 - 204) = 1100 \times 692 = 761200.(ii) Given exp. = (387)^2 + (114)^2 + 2 \times 387 \times 114= a^2 + b^2 + 2ab, where a = 387, b = 114= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001.(iii) Given exp. = (81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab, where a = 81, b = 68= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.Ex. 13. Which of the following numbers is divisible by 3 ?(i) 541326 (ii) 5967013Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3.Hence, 541326 is divisible by 3.(ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3.Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ?Sol. Let the missing digit be x.Sum of digits (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x).For (34 + x) to be divisible by 9, x must be replaced by 2.$		$(4)^{103}$ gives unit digit of the product (6×4) <i>i.e.</i> , 4.
Sol. $(4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2$. Total number of prime factors = $(22 + 5 + 2) = 29$. Ex. 12. Simplify: (i) 896 × 896 - 204 × 204 (ii) 387 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = $(896)^2 - (204)^2 = (896 + 204) (896 - 204) = 1100 \times 692 = 761200$. (ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.		Hence unit's digit in $(264)^{100} + (264)^{100} = unit's unit's unit's in (0 + 4) = 0.$
∴ Total number of prime factors = $(22 + 5 + 2) = 29$. Ex. 12. Simplify: (i) 896 × 896 - 204 × 204 (ii) 387 × 387 + 114 × 114 + 2 × 387 × 114 (iii) 81 × 81 + 68 × 68 - 2 × 81 × 68 Sol. (i) Given exp. = $(896)^2 - (204)^2 = (896 + 204)(896 - 204) = 1100 \times 692 = 761200$. (ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	Ex. 1	1. Find the total number of prime factors in the expression $(4)^{x} \times (7)^{y} \times (11)^{z}$.
Ex. 12. Simplify: (i) $896 \times 896 - 204 \times 204$ (ii) $387 \times 387 + 114 \times 114 + 2 \times 387 \times 114$ (iii) $81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$ Sol. (i) Given exp. = $(896)^2 - (204)^2 = (896 + 204)(896 - 204) = 1100 \times 692 = 761200$. (ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	Sol.	$(4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 7^5 \times 11^2.$
(ii) $387 \times 387 + 114 \times 114 + 2 \times 387 \times 114$ (iii) $81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$ Sol. (i) Given exp. = $(896)^2 - (204)^2 = (896 + 204)(896 - 204) = 1100 \times 692 = 761200$. (ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	·	Total number of prime factors = $(22 + 5 + 2) = 29$.
(iii) $81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$ Sol. (i) Given exp. = $(896)^2 - (204)^2 = (896 + 204)(896 - 204) = 1100 \times 692 = 761200$. (ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	Ex. 1	2. Simplify: (i) $896 \times 896 - 204 \times 204$
Sol. (i) Given $\exp = (896)^2 - (204)^2 = (896 + 204) (896 - 204) = 1100 \times 692 = 761200.$ (ii) Given $\exp = (387)^2 + (114)^2 + 2 \times 387 \times 114$ $= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ $= (a + b)^2 = (387 + 114)^2 = (501)^2 = 251001.$ (iii) Given $\exp = (81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.$ Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.		(<i>ii</i>) $387 \times 387 + 114 \times 114 + 2 \times 387 \times 114$
(ii) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$ = $a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$ = $(a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$. (iii) Given exp. = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81$, $b = 68$ = $(a - b)^2 = (81 - 68)^2 = (13)^2 = 169$. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	r exactly	$(iii) 81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$
$= a^{2} + b^{2} + 2ab, \text{ where } a = 387, b = 114$ $= (a + b)^{2} = (387 + 114)^{2} = (501)^{2} = 251001.$ (<i>iii</i>) Given exp. = $(81)^{2} + (68)^{2} - 2 \times 81 \times 68 = a^{2} + b^{2} - 2ab, \text{ where } a = 81, b = 68$ $= (a - b)^{2} = (81 - 68)^{2} = (13)^{2} = 169.$ Ex. 13. Which of the following numbers is divisible by 3 ? (<i>i</i>) 541326 (<i>ii</i>) 5967013 Sol. (<i>i</i>) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. (<i>ii</i>) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	Sol.	(i) Given exp. = $(896)^2 - (204)^2 = (896 + 204)(896 - 204) = 1100 \times 692 = 761200$.
$= (a + b)^{2} = (387 + 114)^{2} = (501)^{2} = 251001.$ (iii) Given exp. = $(81)^{2} + (68)^{2} - 2 \times 81 \times 68 = a^{2} + b^{2} - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^{2} = (81 - 68)^{2} = (13)^{2} = 169.$ Ex. 13. Which of the following numbers is divisible by 3? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	ίn.	(<i>ii</i>) Given exp. = $(387)^2 + (114)^2 + 2 \times 387 \times 114$
$= (a + b)^{2} = (387 + 114)^{7} = (501)^{7} = 251001.$ (iii) Given exp. = $(81)^{2} + (68)^{2} - 2 \times 81 \times 68 = a^{2} + b^{2} - 2ab$, where $a = 81$, $b = 68$ $= (a - b)^{2} = (81 - 68)^{2} = (13)^{2} = 169.$ Ex. 13. Which of the following numbers is divisible by 3? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = $(5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = $(5 + 9 + 6 + 7 + 0 + 1 + 3) = 31$, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.		$= a^2 + b^2 + 2ab$, where $a = 387$, $b = 114$
 (iii) Given exp. = (81)² + (68)² - 2×81×68 = a² + b² - 2ab, where a = 81, b = 68 = (a - b)² = (81 - 68)² = (13)² = 169. Ex. 13. Which of the following numbers is divisible by 3 ? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2. 		$-(a + b)^2 = (387 + 114)^2 = (501)^2 = 251001$
$= (a - b)^2 = (81 - 68)^2 = (13)^2 = 169.$ Ex. 13. Which of the following numbers is divisible by 3? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2.		(iii) Given even = $(81)^2 + (68)^2 - 2 \times 81 \times 68 = a^2 + b^2 - 2ab$, where $a = 81, b = 68$
 Ex. 13. Which of the following numbers is divisible by 3? (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2. 	14	(<i>ut</i>) Given exp. = (G1) + (G2) $(2 \times G1 \times G2)^2 = 160$
 (i) 541326 (ii) 5967013 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2. 	. '18 kg m	$= (a-b)^{2} = (81-68)^{2} = (13)^{2} = 105.$
 Sol. (i) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2. 	Ex. 1	
 (ii) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2. 	Sol.	(i) Sum of digits in $541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21$, which is divisible by 3.
 by 3. Hence, 5967013 is not divisible by 3. Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2. 	S 112.	Hence, 541326 is divisible by 3.
 Ex. 14. What least value must be assigned to * so that the number 197*5462 is divisible by 9? Sol. Let the missing digit be x. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2. 		by 3 solutions as 601 102 of 111 bell 000001 guilderb of a
divisible by 9 ? Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.		Hence, 5967013 is not divisible by 3.
Sol. Let the missing digit be x. Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	EX.	by 9?
Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$. For $(34 + x)$ to be divisible by 9, x must be replaced by 2.		Let the missing digit be x.
For $(34 + x)$ to be divisible by 9, x must be replaced by 2.	COM	Sum of digits = $(1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x)$.
	1918	For $(34 + x)$ to be divisible by 9, x must be replaced by 2.
fictice, the digit in prese		Hence, the digit in place of * must be 2.

Ex. 15. Which of the following numbers is divisible by 4?

(i) 67920594 (ii) 618703572 of additional ten at TER

Sol.

10

(i) The number formed by the last two digits in the given number is 94, which is not divisible by 4.

Hence, 67920594 is not divisible by 4.

(ii) The number formed by the last two digits in the given number is 72, which is divisible by 4.

Hence, 618703572 is divisible by 4.

Ex. 16. Which digits should come in place of * and \$ if the number 62684*\$ is divisible by both 8 and 5 ?

Sol. Since the given number is divisible by 5, so 0 or 5 must come in place of \$. But, a number ending with 5 is never divisible by 8. So, 0 will replace \$.

Now, the number formed by the last three digits is 4*0, which becomes divisible by 8, if * is replaced by 4.

Hence, digits in place of * and \$ are 4 and 0 respectively.

Ex. 17. Show that 4832718 is divisible by 11.

Sol. (Sum of digits at odd places) - (Sum of digits at even places)

= (8 + 7 + 3 + 4) - (1 + 2 + 8) = 11, which is divisible by 11.

Hence, 4832718 is divisible by 11.

Ex. 18. Is 52563744 divisible by 24 ?

(4)108 gives unit digit of the product Sol. $24 = 3 \times 8$, where 3 and 8 are co-primes.

The sum of the digits in the given number is 36, which is divisible by 3. So, the given number is divisible by 3.

The number formed by the last 3 digits of the given number is 744, which is divisible by 8. So, the given number is divisible by 8.

Thus, the given number is divisible by both 3 and 8, where 3 and 8 are co-primes. So, it is divisible by 3×8 , *i.e.*, 24.

Ex. 19. What least number must be added to 3000 to obtain a number exactly divisible by 19?

Sol. On dividing 3000 by 19, we get 17 as remainder.

Number to be added = (19 - 17) = 2. · · ·

Ex. 20. What least number must be subtracted from 2000 to get a number exactly divisible by 17?

Sol. On dividing 2000 by 17, we get 11 as remainder.

Required number to be subtracted = 11. 0.0.15

Ex. 21. Find the number which is nearest to 3105 and is exactly divisible by 21.

Sol. On dividing 3105 by 21, we get 18 as remainder.

Number to be added to 3105 = (21 - 18) = 3. ÷.

Hence, required number = 3105 + 3 = 3108.

Ex. 22. Find the smallest number of 6 digits which is exactly divisible by 111.

Sol. Smallest number of 6 digits is 100000.

On dividing 100000 by 111, we get 100 as remainder.

Number to be added = (111 - 100) = 11. It for a CLOVARA something

Sol.

Hence, required number = 100011. https://www.seline.com/seline/selin

Ex. 23. On dividing 15968 by a certain number, the quotient is 89 and the remainder is 37. Find the divisor. $Divisor = \frac{Dividend - Remainder}{Divisor}$

 $\frac{\text{ividend} - \text{Remainder}}{\text{Quotient}} = \frac{15968 - 37}{89} = 179.$

Ex. 24. A number when divided by 342 gives a remainder 47. When the same number is divided by 19, what would be the remainder ?

Sol. On dividing the given number by 342, let k be the quotient and 47 as remainder. Then, number = $342k + 47 = (19 \times 18k + 19 \times 2 + 9) = 19 (18k + 2) + 9$.

The given number when divided by 19, gives (18k + 2) as quotient and 9 as remainder. Ex. 25. A number being successively divided by 3, 5 and 8 leaves remainders 1, 4 and 7 respectively. Find the respective remainders if the order of divisors be reversed.

Sol.	$3 \mid x$	rina ine respec			31. 2 + 2" + 2" + Given series is a (
	5 y -	1				
	8 z -	4 018				
	1 -	7		(2 - 3)	(] - 1)	
	$z = (8 \times 1)$	(+7) = 15; y = (5z)	$(+ 4) = (5 \times 15 +$	(4) = 79; x = ($(3y + 1) = (3 \times 79 + 1) =$	238.
	Now, 8	 versions; 	ERCISE 1	xa		
	5					
	3	5 4	TYPE QUE	BJECTIVE		
		3 - 4			ections : $Mark$ (ℓ) o	Dire
		1 1-2	C 4 9			.1
ar ped to	Respectiv	e remainders are	e 0, 4, 2. L 031 is die	ided by 5		
	26. Find th	he remainder w	$nen 2^{-1}$ is all $nen 2^{-1}$	in A log 4 v	4×4 gives unit dig	rit Al
Sol.			210 X 210 X 210	15 4 [as 4 ×	4 X 4 gives unit dig	,10 -1].
B. 2001)	C (C) (C)	t of 2^{31} is 8.				
		hen divided by 5				
		³¹ when divided b				
		any numbers be				1
Sol.						
	This is a	n A.P. with $a = 1$	14 and $d = (21)$	(-14) = 7.		
		ntain <i>n</i> terms.				
	Then, T _n	$= 84 \implies a + (n)$	(-1) d = 84		a)_16226	
			$n-1) \times 7 = 8$	4 or $n = 11$	10200 + 2736 + 4137	a
		number of term				
Ex.	28. Find t.	he sum of all o	dd numbers i	ıpto 100.	W798 + 3798 + 378.	
Sol.		n numbers are 1,		e suger rei		
	This is a	in A.P. with $a = 1$	1 and $d = 2$.			
	Let it co	ntain <i>n</i> terms. Th	hen,			
	1 + (n -	1) \times 2 = 99 or <i>n</i>	= 50.			
	(1))(D) (()) (D)	n (Genet	town i lost tom			
COUNTY AN	Required	d sum = $\frac{n}{2}$ (first	term + last ter	(d) 3246		
		$= \frac{50}{2} \times (1 + 1)$	+ 99) = 2500.		548 + 7314 + 8362	11. 9
		$=\frac{1}{2}$	F 33) = 2000.	(6) 8410	c) 8230	
Ex.	29. Find t	the sum of all 2	digit numbe	rs divisible	by 3	
Sol.	All 2 dig	git numbers divis	ible by 3 are	(b) 2773 =		
		18, 21,, 99.				18, 3
	This is a	an A.P. with $a =$	12 and d = 3.	(6) 2	, [(r	
	Let it co	ntain <i>n</i> terms. T	hen,	, which of th		Id, B
	12 + (n - 1)	$(-1) \times 3 = 99 \text{ or}$	$n = 30$. \exists (d)		1) 4	
	Require	d sum = $\frac{30}{2} \times (12)$	(2+99) = 1665.		i) Cannot, be determ	
		770				

Ex. 30. How many terms are there in 2, 4, 8, 16, ..., 1024 ? 4 9 Sol. Clearly 2, 4, 8, 16, ..., 1024 form a G.P. with a = 2 and r= 2 Let the number of terms be n. Then, $2 \times 2^{n-1} = 1024$ or $2^{n-1} = 512 = 2^9$. n - 1 = 9 or n = 10.Ex. 31. $2 + 2^2 + 2^3 + \dots + 2^8 = ?$ Sol. Given series is a G.P. with a = 2, r = 2 and n = 8. $=\frac{2 \times (2^8 - 1)}{2}$ $a(r^n-1)$ Sum = $= (2 \times 255) = 510.$ **EXERCISE** 1 (OBJECTIVE TYPE QUESTIONS) Directions : Mark (✓) against the correct answer : 1. The difference between the local value and face value of 7 in the numeral 657903 is : (a) 0(b) 7896 (c) 6993 (*d*) 903 2. The difference between the place values of 7 and 3 in the number 527435 is : (a) 4 (b) 5 (c) 45 (d) 6970 (R.R.B. 2001) 3. The sum of the smallest six-digit number and the greatest five-digit number is : (c) 211110 (a) - 1999999(b) 201110 (d) 1099999 4. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is : (S.S.C. 1998) (a) 1(b) 9000 (c) 9001 (d) 90001 5. 5978 + 6134 + 7014 = ?(Bank P.O. 1999) (a) 16226 (b) 19126 (c) 19216 (d) 19226 6. 18265 + 2736 + 41328 = ?(Bank P.O. 2000) (a) 61329 (b) 62239 (c) 62319 (d) 62329 **7.** 39798 + 3798 + 378 = ? (Bank P.O. 2002) (a) 43576 (b) 43974 (c) 43984 (d) 49532 8. 9358 - 6014 + 3127 = ?(SIDBI, 2000) (a) 6381 (b) 6471 (c) 6561 (d) 6741 9. 9572 - 4018 - 2164 = ?(a) 3300 (b) 3390 (c) 3570 (d) 7718 10. 7589 - ? = 3434(Bank P.O. 2003) (a) 721 (b) 3246 (c) 4155 (d) 11023 **11.** 9548 + 7314 ÷ 8362 + ? (S.B.I.P.O. 2000) (a) 8230 (b) 8410 (c) 8500 (d) 8600 12. 7845 - ? = 8461 - 3569(a) 2593 (b) 2773 (c) 3569 (d) None of these **13.** 3578 + 5729 - ?486 = 5821(a) 1 (b) 2 (c) 3 (d) None of these 14. If 6x43 - 46y9 = 1904, which of the following should come in place of x? (a) 4 (b) 6 (c) 9(d) Cannot be determined (e) None of these

mber	's aviisiinsu()			13
	Terretoria anti-se terreto	Scietio bao vidento.	niano and 788 adioi	
15.	What should be the m		the following equation	
	5A9 - 7B2 + 9C6 =			instead Inc.
	(a) 5		(c) 7	(d) 9
	In the following sum, ? + 1? + 2? + ?3 + ?1			
	(a) 4	(b) 6	(c) 8	(d) 9
17.	5358 × 51 = ?	llest number, which w	r of digits of the ima	36. The numbe
	(a) 273258 $360 \times 17 = ?$	(b) 273268	(c) 273348	(d) 273358
18.	$360 \times 17 = ?$	8. (5)	a (d)	(R.B.I. 2003)
	(a) 5120		(c) 6120	(d) 6130
	F07 000 9		$\phi = (q)^{1}$	(M.B.A. 1998)
80Ë.	(a) 586413	(b) 587523	(c) 614823	(d) 615173
20			(0) 011020 87 = 8	
40.	469157 × 9999 = ? (<i>a</i>) 4586970843	(1) 1696070719	(a) 4601100849	(1) 594640195
	8756 × 99999 = ?			
	(a) 796491244	(0) 815491244	(c) 875591244	
	The value of 112×5^4			(M.B.A. 2002)
200	(<i>a</i>) 6700	(b) 70000	(c) 76500	(d) 77200
	935421 × 625 = ?			(0) 0
	(a) 575648125	(b) 584638125	(c) 584649125	(d) 585628125
	$12846 \times 593 + 12846$		i st Az 'TI ' aamisod	
	(a) 12846000	(b) 14203706	(c) 24038606	(d) 24064000
25.	$1014 \times 986 = ?$	en reast possible value	1,52,931,005,53	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	$\begin{array}{l} (a) & 998804 \\ 1307 \times 1307 = ? \end{array}$	(b) 998814	(c) 998904	(d) 999804
26.	$1307 \times 1307 = ?$			
	(a) 1601249	(b) 1607249	(c) 1701249	(d) 1708249
27.	1399 × 1399 = ?	0.00	e ionoving is analysis	
	(a) 1687401	(b) 1901541	(c) 1943211	
28.	$106 \times 106 + 94 \times 94$			
100	(<i>a</i>) 20032	(b) 20072	(c) 21032	(d) 23032
	$217 \times 217 + 183 \times 18$			
	(a) 79698	(b) 80578	(c) 80698	
90	12345679×72 is equ			
50,		(b) 888888888	(.) 00000000	(S.S.C. 2000)
0.1				(a) 999999998
31.	What number should	replace x in this mul	tiplication problem ?	
			1 (6)	
		hon 14	un of prime numbers	
		1216	(Hotel M	anagement, 2000)
		· (b) 2	(c) 4	
	A positive integer, wh			
04.	it is multiplied by 10	000. This positive inte	ger is : anyolid and to	(M.A.T. 2003)
00	(a) 1	(b) 3	(c) 5	(<i>d</i>) 7
33.	which of the followin	g can be a product of	two 3-digit numbers	**3 and **8 ?

33. Which of the following can be a product of two 3-digit numbers **3 and **8 ? (a) 1010024 (b) 991014 (c) 9124 (d) None of these

34.	A boy multiplies 9	87 by a certain num	ber and obtains 559981 a	s his answer. If in the
	answer, both 9's ar	e wrong but the othe	er digits are correct, then t	he correct answer will
	De :			(C.B.I. 1997)
maile	(a) 553681	(b) 555181	(c) 555681	(d) 556581
35.	When a certain nu smallest such nun	mber is multiplied	by 13, the product consists	s entirely of fives. The
	(a) 41625	(b) 42135		(M.B.A, 2002)
36		(0) 42135	(c) 42515	(d) 42735
00.	result consisting e	ntirely of nines, is	number, which when mul	
	(a) 3	(b) 5	Charles of a second state	(d) 278258
	$-95 \div 19 = ?$		(c) 6	(<i>d</i>) 8 81
	(a) - 5	(b) - 4		Management, 2000)
38.		(-) ·	(c) 0	(<i>d</i>) 5
81	$1*5$4 \div 148 = 78$		in the following equatio	n ? (B.S.R.B. 1998)
		o) 4 (c) ((e) None of these
39.	The sum of all pe	ossible two-digit nu	mbers formed from three	e different one-digit
	natural numbers w	then divided by the	sum of the original three	numbers is equal to :
		(b) 22	4000 E7793	(d) None of these
	(M.B.A			(C.B.I. 1997)
40.	If n is a negative i	number, then which	of the following is the le	
	(a) 0	(b) - n	(c) $2n$	(d) n^2
41.	If x and y are nega	tive, then which of	the following statements	is/are always true ?
		e II. xy is positiv		ve. (M.A.T. 2004)
0004	(a) I only	(b) II only	(c) III only	(d) I and III only
42.	If $-1 \le x \le 2$ and	$1 \leq y \leq 3$, then least	ast possible value of (2y -	-3x) is :
1111	(a) 0	(b) - 3	(c) - 4	(d) = 5
43.	If a and b are both	odd numbers, whi	ch of the following is an	even number ?
	(a) a + b	(b) a + b + 1	(c) ab	(d) ab + 2
44.	Which of the follow		(5) 1687249	
	(a) Sum of two odd		(b) Difference of t	wo odd numbers
	(c) Product of two		(d) None of these	
45.	For the integer n ,	if n^3 is odd, then w	hich of the following stat	ements are true ?
	1. n is odd.	II. n^2 is odd.	III. n^2 is even.	(D.M.R.C. 2003)
t, 2002)	(a) I only	(b) II only	(c) I and II only	(d) I and III only
46.	The least prime nu	mber is :)	(b) 80578	(a) 79696
	(a) 0	(b) 1	(c) 2 d laupe at 27	
47.	What is the total r	umber of prime nu	mbers less than 70 ?	RESERVED ()
	(a) 17	(b) 18	int ni (c) 19 ₁₉₁ blunds m	(d) 20
48.	The total number of	f even prime numb	ers is :	(d) 20
	(a) 0	(b) 1	(c) 2	(d) None of these
49.	Find the sum of pr		between 60 and 75.	(R.R.B. 2000)
(0602.,1	(a) 199	(b) 201	(c) 211	
	The smallest three-			(d) 272
			(c) 109	(S.S.C. 2000)
51.	Which one of the fo	llowing is a prime	number ?	(a) None of these
	(a) 161	(b) 221	(c) 373	
			+ 1 is not a prime number	(d) 437
and these	(a) 3 (b)	(b) 4 (c)		
		(0). + (0)		(d) None of these
			(notel N	lanagement, 1997)

15

Numbers 53. The sum of three prime numbers is 100. If one of them exceeds another by 36, then one of the numbers is : 000 (10) (b) 29 (c) 41 (d) 67 (a) 7 54. There are four prime numbers written in ascending order. The product of the first three is 385 and that of the last three is 1001. The last number is : (S.S.C. 2003) (c) 17 (d) 19 (a) 11 (b) 13 55. How many numbers between 400 and 600 begin with or end with a digit of 5 ? (c) 110 (d) 120 (a) 40(b) 100 56. If we write all the whole numbers from 200 to 400, then how many of these contain (Hotel Management, 2003) the digit 7 once and only once ? (d) 36 (c) 35 (a) 32 (b) 34 57. The unit's digit in the product $274 \times 318 \times 577 \times 313$ is : (d) 5 (c) 4 (a) 2 (b) 3 58. The digit in unit's place of the product $81 \times 82 \times \dots \times 89$ is : (d) 8 (b) 2 (c) 6 (a) 0(Section Officers', 2003) 59. If the unit digit in the product $(459 \times 46 \times 28* \times 484)$ is 2, the digit in place of * is : (a) 3 (c) 7 (d) None of these (b) 5 60. The unit's digit in the product (3127)¹⁷³ is : dialog at 201720 and and 11.08 (a) 1 month into (b) 3 margin (c) 7 differentiation (d) 9 alg **61.** The unit's digit in the product $(7^{71} \times 6^{59} \times 3^{65})$ is : (L.I.C.A.A.O. 2003) (a) 1 (b) 2 (c) 4 (c) 4 (d) 6 (d) 6 62. The digit in the unit's place of the number represented by $(7^{95} - 3^{58})$ is : (b) 4 (c) 6 (d) 7 (a) 0 Idialytical 2+87353 redmun edit toda os e of benaissa ed taum au (A.A.O. Exam, 2003) 63. If x is an even number, then x^{4n} , where n is a positive integer, will always have : (b) 6 in the unit's place (a) zero in the unit's place (c) either 0 or 6 in the unit's place (d) None of these (Hotel Management, 1997) 64. The number of prime factors of $(3 \times 5)^{12} (2 \times 7)^{10} (10)^{25}$ is : (a) 47 (b) 60 (c) 72 (d) None of these 65. $397 \times 397 + 104 \times 104 + 2 \times 397 \times 104 = ?$ (c) 260101 (d) 261001 (a) 250001 (b) 251001 **66.** $186 \times 186 + 159 \times 159 - 2 \times 186 \times 159 = ?$ (a) 729 (b) 1039 (c) 2019 (d) 7029 67. $(475 + 425)^2 - 4 \times 475 \times 425$ is equal to : (b) 3160 (d) 3600 (c) 3500 (a) 250068. If $(64)^2 - (36)^2 = 20z$, the value of z is : (d) None of these (c) 180 (b) 120 (a) 70 o aidialyio **69.** $(46)^2 - (?)^2 = 4398 - 3066$ (B.S.R.B. 1998) (c) 36 (b) 28 (d) 42 (a) 16 $(856 + 167)^2 + (856 - 167)^2$ 70. is equal to : 856 × 856 + 167 × 167 (d) 1023 (b) 2 (c) 689 (a) 1

 $(469 + 174)^2 - (469 - 174)^2$ is equal to : 469×174 8991 (d) 643

(a) 2 (b) 4

(c) 295

.

.

72.				
	. The sum of fi	irst 45 natural numbers	is : and and said as	R. The amount of
	(4) 1000	(0) 1200	(c) 2070	(d) 2140
73.	The sum of ev	ven numbers between 1	and 31 is :	
	(a) 16	(b) 128	(c) 240	(d) 512
		8 + + 100) is equal to		
	(a) 2525	(b) 2975	(c) 3225	(d) 3775
75.	How many nu	mbers between 200 and		
	(a) 5	(b) 6	(c) 7 (6)	(d) 8 (b)
76.	How many th	ree-digit numbers are di	ivisible by 6 in all ?	56. If we write all
	(a) 149	(b) 150	(c) 151	(<i>d</i>) 166
77.	If $(1^2 + 2^2 + 3)$	$3^2 + \dots + 10^2$ = 385, th		(a) 100
	(a) 770	(b) 1155	(c) 1540	$(d) (385 \times 385)$
78.	The value of ($(11^2 + 12^2 + 13^2 + 14^2 +$	(c) 1540	(a) (365 x 385)
	(a) 385	(b) 2485	(c) 2870	
79.	and the state water we don't	visible by 3, which of th		(<i>d</i>) 3255
	(a) 0	(b) 2	e following digits can re	eplace * ?
		$\frac{\partial \partial u}{\partial x} = \frac{\partial u}{\partial x} $	exected (c) of ord end at a	
			Empror de la companya	(S.S.C. 1999)
00.	nlace and the	357*25* is divisible by bo	th 3 and 5, then the miss	sing digits in the unit's
	(a) 0, 6	thousandth place respect	lively are : (Hotel	Management, 1997)
		(0) 0, 6	(c) 5, 4 and a 4	(d) None of these
01.	6 the missing	-digit number with * as digit is :	a missing digit. If the r	number is divisible by
	(a) 2	(b) 3	(c) 6	
89				(d) 7 (b)
04.	8 ?	lue must be assigned to	* so that the number 6	3576*2 is divisible by
1995 E 197		(b) 2		
83				
1980	by 9 ?	lue must be given to * so) that the number 451*6	03 is exactly divisible
	(a) 2			
			(a) 7	est an o and ba
84.	How many of			(<i>d</i>) 8
84.	How many of 1 2133, 2343, 34	the following numbers a	re divisible by 3 but not	
	2133, 2343, 34	the following numbers a 474, 4131, 5286, 5340, 6	re divisible by 3 but no 5336, 7347, 8115, 9276	t by 9 ?
1	2133, 2343, 34 (a) 5	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6	re divisible by 3 but not 3336, 7347, 8115, 9276 (c) 7	t by 9 ? (d) None of these
85.	2133, 2343, 34 (a) 5 Which one of t	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is	re divisible by 3 but not 3336, 7347, 8115, 9276 (c) 7 5 exactly divisible by 11	(d) None of these (C.D.S. 2003)
85.	2133, 2343, 34 (a) 5 Which one of t (a) 235641	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is (b) 245642	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 e exactly divisible by 11 (c) 315624	(d) None of these (C.D.S. 2003) (d) 415624
85.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 e exactly divisible by 11 (c) 315624	(d) None of these (C.D.S. 2003) (d) 415624
85. 86.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11?	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is (b) 245642 tue must be assigned to	re divisible by 3 but not 3336, 7347, 8115, 9276 (c) 7 e exactly divisible by 11 (c) 315624 * so that the number 80	(d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by
85. 86.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11 ? (a) 1	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is (b) 245642 the must be assigned to (b) 2	re divisible by 3 but not 3336, 7347, 8115, 9276 (c) 7 4 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3	(d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5
85. 86. 87.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11 ? (a) 1 A number 476*	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is (b) 245642 tue must be assigned to (b) 2 **0 is divisible by both 3	re divisible by 3 but not 3336, 7347, 8115, 9276 (c) 7 4 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3	(d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5
85. 86. 87.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11 ? (a) 1 A number 476* and tenth place	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is (b) 245642 tue must be assigned to (b) 2 **0 is divisible by both 3 e respectively are :	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 5 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3 and 11. The non-zero di	(d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5 gits in the hundredth
85. 86. 87.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11 ? (a) 1 A number 476* and tenth place (a) 7, 4	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is (b) 245642 tue must be assigned to (b) 2 **0 is divisible by both 3 e respectively are : (b) 7, 5	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 5 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3 and 11. The non-zero di (c) 8, 5	 (d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5 gits in the hundredth (d) None of these
85. 86. 87. 88.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11 ? (a) 1 A number 476* and tenth place (a) 7, 4 Which of the fo	<pre>the following numbers a 474, 4131, 5286, 5340, 6</pre>	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 5 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3 and 11. The non-zero di (c) 8, 5 isible by 3, 7, 9 and 11	 (d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5 gits in the hundredth (d) None of these
85. 86. 87. 88.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11? (a) 1 A number 476* and tenth place (a) 7, 4 Which of the fo (a) 639	<pre>the following numbers a 474, 4131, 5286, 5340, 6</pre>	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 5 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3 and 11. The non-zero di (c) 8, 5 isible by 3, 7, 9 and 11 (c) 3791	 (d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5 gits in the hundredth (d) None of these (d) 37911
85. 86. 87. 88. 89.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11 ? (a) 1 A number 476* and tenth place (a) 7, 4 Which of the fo (a) 639 The value of P,	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is (b) 245642 the must be assigned to (b) 2 **0 is divisible by both 3 e respectively are : (b) 7, 5 following numbers is divi (b) 2079 c, when 4864 × 9P2 is divi	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 5 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3 and 11. The non-zero di (c) 8, 5 isible by 3, 7, 9 and 11 (c) 3791 visible by 12, is :	(d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5 gits in the hundredth (d) None of these (d) 37911
85. 86. 87. 88. 89.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11 ? (a) 1 A number 476* and tenth place (a) 7, 4 Which of the fo (a) 639 The value of P, (a) 2	the following numbers a (b) 6 (b) 6 the following numbers is (b) 245642 the must be assigned to (b) 2 (b) 2 (b) 2 (b) 2 (b) 2 (b) 7, 5 following numbers is divition (b) 2079 (b) 5	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 5 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3 and 11. The non-zero di (c) 8, 5 isible by 3, 7, 9 and 11 (c) 3791 visible by 12, is : (c) 8	(d) None of these (d) None of these (C.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5 gits in the hundredth (d) None of these (d) 37911 (d) None of these
85. 86. 87. 88. 89. 90.	2133, 2343, 34 (a) 5 Which one of t (a) 235641 What least val 11 ? (a) 1 A number 476* and tenth place (a) 7, 4 Which of the fo (a) 639 The value of P, (a) 2	the following numbers a 474, 4131, 5286, 5340, 6 (b) 6 the following numbers is (b) 245642 the must be assigned to (b) 2 **0 is divisible by both 3 e respectively are : (b) 7, 5 following numbers is divi (b) 2079 c, when 4864 × 9P2 is divi	re divisible by 3 but not 5336, 7347, 8115, 9276 (c) 7 5 exactly divisible by 11 (c) 315624 * so that the number 86 (c) 3 and 11. The non-zero di (c) 8, 5 isible by 3, 7, 9 and 11 (c) 3791 visible by 12, is : (c) 8	(d) None of these (c.D.S. 2003) (d) 415624 6325*6 is divisible by (d) 5 gits in the hundredth (d) None of these (d) 37911 (d) None of these

16

17 Numbers 91. If the number 42573* is completely divisible by 72, then which of the following numbers should replace the asterisk ? in the selferne and . S.I. vd eldiatvib at (d) 7 (c) 6 (b) 5 (a) 4 92. Which of the following numbers is exactly divisible by 99 ? (d) 3572404 · (a) 114345 (b) 135792 (c) 913464 93. The digits indicated by * and \$ in 3422213*\$ so that this number is divisible by 99, are respectively : addition to to doubt (a) 1, 9 to algorithm (b) 3, 7 to back now (c) 4, 6 with a grant (d) 5, 5 94. If x and y are the two digits of the number 653xy such that this number is divisible by 80, then x + y is equal to : (a) 2 = (a) (b) 3 = (b) (c) 4 = (c) 4 = (c) (d) 695. How many of the following numbers are divisible by 132 ? (Hotel Management, 2002) 264, 396, 462, 792, 968, 2178, 5184, 6336 (a) 4 (b) 5 (c) 6 (d) 7 (d) 7 (I.A.M. 2002) 96. 6897 is divisible by : 1.12 (b) 19 only (a) 11 only (d) neither 11 nor 19 (c) both 11 and 19 97. Which of the following numbers is exactly divisible by all prime numbers between 1 and 17 ? (d) 515513 (b) 440440 (c) 510510 (a) 345345 (S.S.C. 1998) 98. 325325 is a six-digit number. It is divisible by : (d) all 7, 11 and 13 (a) 7 only (b) 11 only (c) 13 only (C.D.S. 2003) 99. The number 311311311311311311311 is : (b) divisible by 11 but not by 3 (a) divisible by 3 but not by 11 (d) neither divisible by 3 nor by 11 (c) divisible by both 3 and 11 100. There is one number which is formed by writing one digit 6 times (e.g. 111111, 444444 116. The least number which dust etc.). Such a number is always divisible by : (c) 13 only (d) All of these (b) 11 only (a) 7 only 101. A 4-digit number is formed by repeating a 2-digit number such as 2525, 3232 etc. Any and the medanus tase (S.S.C. 2000) number of this form is exactly divisible by : (b) 11 of yd aldiaivib a (a) 7 an 5) (d) smallest 3-digit prime number (c) 13 102. A six-digit number is formed by repeating a three-digit number; for example, 256256 or 678678 etc. Any number of this form is always exactly divisible by : 1910 (c) 13 only (d) 1001 (b) 11 only (a) 7 only 103. The largest natural number which exactly divides the product of any four consecutive natural numbers is : do not reflectes and num to string antwolfor and to any (c) 24 (d) 120(b) 12 (a) 6 104. The largest natural number by which the product of three consecutive even natural (d) 96 (c) 48 (b) 24 (a) 16105. The sum of three consecutive odd numbers is always divisible by : and see I. 2 sobulation and the II. 3 III Tool have III. 5 UP sound to red IV. 6 all 181 (a) Only I (c) Only I and III (d) Only II and IV (b) Only II (Hotel Management, 2003) 106. The difference between the squares of two consecutive odd integers is always divisible (M.B.A. 2003) by : (a) 3 (b) 6 (d) 8(c) 7

18 Quantitative 'Aptitude 107. A number is multiplied by 11 and 11 is added to the product. If the resulting number is divisible by 13, the smallest original number is : palgor bloods moderne (a) 12 (b) 22 (c) 26 (d) 53 108. The sum of the digits of a 3-digit number is subtracted from the number. The resulting number is : (a) divisible by 6 (b) divisible by 9 (c) divisible neither by 6 nor by 9 (d) divisible by both 6 and 9 109. If x and y are positive integers such that (3x + 7y) is a multiple of 11, then which of the following will also be divisible by 11 ? (a) 4x + 6y(b) x + y + 4(c) 9x + 4y (d) 4x - 9y110. A 3-digit number 4a3 is added to another 3-digit number 984 to give the four-digit number 13b7, which is divisible by 11. Then, (a + b) is : (a) 10 (b) 11 (c) 12 (d) 15 111. The largest number that exactly divides each number of the sequence $(1^5 - 1), (2^5 - 2),$ $(3^5 - 3), \dots, (n^5 - n), \dots$ is : (a) 1(b) 15 (c) 30 (d) 120 112. The greatest number by which the product of three consecutive multiples of 3 is always divisible is : (S.S.C. 2000) (b) 81 (c) 162 (a) 54(d) 243 113. The smallest number to be added to 1000 so that 45 divides the sum exactly is : (a) 10 (b) 20 (c) 35 (d) 80The smallest number that must be added to 803642 in order to obtain a multiple of 114. 11 is : (C.B.I. 2003) (a) 1ber S1181131131 7 (2) (b) 4 (d) 9 115. Which of the following numbers should be added to 11158 to make it exactly divisible by 77 ? (a) 5 (b) 7 point (c) 8 (c) 8 (c) 7 point (c) 8 (c) 8 (c) 9 (116. The least number which must be subtracted from 6709 to make it exactly divisible by 9 is : (C.B.I. 1998) (a) 2 (b) 3 (c) 4 (d) 5 117. What least number must be subtracted from 427398 so that the remaining number is divisible by 15? (Bank P.O. 2000) (a) 3 and 1 (a) (b) 6 (b) 6 (c) 11 (d) 16 118. What least number must be subtracted from 13294 so that the remainder is exactly divisible by 97 ? closes everyle a med and the reducer and one STARTA we (a) 1(b) 3 (c) 4 (d) 5 119. When the sum of two numbers is multiplied by 5, the product is divisible by 15. Which one of the following pairs of numbers satisfies the above condition ? (a) 240, 335 (b) 250, 341 (c) 245, 342 (d) None of these lanutan nava aviduseenss wordt in Buborn add dahdw yd undrau (Hotel Management, 1998) 120. The least number by which 72 must be multiplied in order to produce a multiple of 112, is : (a) 6 ed eldialed (b) 12 at another bo (c) 14 endo end 18 (d) 18 121. The number of times 99 is subtracted from 1111 so that the remainder is less than 99, is : · (S.C.R.A. 1996) (a) 10 (b) 11 (c) 12 (d) 13 122. Find the number which is nearest to 457 and is exactly divisible by 11. (a) 450 (b) 451 (c) 460 (d) 462 (Hotel Management, 2003)

19

•

199	The number near	rest to 99547 which is	exactly divisible by	687 is :
123.	(α) 98928	(b) 99479	(c) 99615	(d) 100166
194		mber of five digits is d		(-(n))
CTARSO B	(a) 99909	(b) 99981	(c) 99990	(d) 99999
125.	The smallest nu	mber of five digits exac	tly divisible by 476	is : (S.S.C. 2004)
1.401	(a) 10000	(1) 10479	(a) 10476	(d) 47600
126.				e remainder is 103. The
	(a) 364724	(b) 365387	(c) 365737	(d) 366757
127.	On dividing 4150 The divisor is :		the quotient is 55	and the remainder is 25.
	(a) 65	(b) 70	(c) 75	(<i>d</i>) 80
128.	A number when	divided by the sum of 30 as the remainder. T	555 and 445 gives t he number is :	wo times their difference (S.S.C. 2000)
		(b) 1250		
129.	A four-digit num largest such num		nes divisible by 3, w	hen 10 is added to it. The
	(a) 9947	(b) 9987	(c) 9989	(<i>d</i>) 9996
130.	A number when a	livided by 114 leaves the remainder will be :	e remainder 21. If th	e same number is divided (R.R.B. 2003)
	(a) 1 (b)	(<i>b</i>) 2	(c) 7	`(d) 21
131.	divided by 37, th	nen the remainder will	be : 01 (6)	hen the same number is (C.B.I. 2003)
1960	(a) 1	(b) 2	(c) 8 11 hoden	(d) 11 1 \mathbb{R}^{1}
132.	A number when by 17, the remain	divided by 119 leaves 19 inder obtained is :) as remainder. If th	e same number is divided Section Officers', 2001)
	(a) 2		ana(c) 7	(<i>d</i>) 10
133.	A number when by 29, the remain	divided by 899 gives a inder will be :	remainder 63. If th	e same number is divided
	(a) 3	(1 × 4	(c) 5	(<i>d</i>) 10
134.	When a number divided by 16, w	is divided by 31, the that will be the remain	remainder is 29. W der ?	Then the same number is (Bank P.O. 2002)
	(a) 11 (d) .	(b) 13	(c) 15	(d) Datà inadequate
135.	divided by 17, th	he remainder is 9. Wha	at is the number ?	Then the same number is (S.B.I.P.O. 1997)
				(d) Data inadequate
136.	In a division sur the remainder is	n, the divisor is 10 times 46, the dividend is :	es the quotient and	5 times the remainder. If
	(a) 4236		(c) 4336	(<i>d</i>) 5336
137.	The difference b the smaller one,	etween two numbers is the quotient is 6 and	1365. When the lathe remainder is 15	rger number is divided by 5. The smaller number is :
			116. (6). 110. (1)	(A.A.O. Exam, 2003)
	(a) 240	(b) 270	(c) 295	(<i>d</i>) 360
138.	In doing a division instead of 21. T	on of a question with z he quotient obtained b	ero remainder, a ca y him was 35. The	
	(a) 0	(b) 12	(c) 13	(d) 20 (S.S.C. 2003)

(S.S.C. 2003)

20 Quantitative Aptitude 139. When n is divided by 4, the remainder is 3. What is the remainder when 2n is divided by 4 ? (a) 1 (b) 2 (c) 3 (d) 6 140. A number when divided by 6 leaves a remainder 3. When the square of the same number is divided by 6, the remainder is : (S.S.C. 2000) (a) 0(b) 1 (c) 2 (d) 3 141. A number when divided successively by 4 and 5 leaves remainders 1 and 4 respectively. When it is successively divided by 5 and 4, then the respective remainders will be : (a) 1, 2 (b) 2, 3 (c) 3, 2 (d) 4, 1 (S.S.C. 2003) 142. A number was divided successively in order by 4, 5 and 6. The remainders were respectively 2, 3 and 4. The number is : (C.B.I. 1997) (a) 214(b) 476 (c) 954 (d) 1908 143. In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors of 585) and got the remainders 4, 8 and 12. If he had divided the number by 585, the remainder would have been : (a) 24 and 1 general (b) 144 an encoded (c) 292 an encoded (d) 584 (N.I.F.T. 1997) 144. A number when divided by 3 leaves a remainder 1. When the quotient is divided by 2, it leaves a remainder 1. What will be the remainder when the number is divided by 6? (a) 2(b) 3 (c) 4 (d) 5 (b) 145. (a) 3 (d) 13 (b) 10146. If x is a whole number, then $x^2(x^2 - 1)$ is always divisible by : (S.S.C. 1998) (a) 12 (b) 24 (c) 12 - xIf the street with (d) multiple of 12 ANSWERS 1. (c) 2. (d) 3. (a) 4. (c) 6. (d) 5. (b) 7. (b) 8. (b) **9.** (b) 10. (c) 11. (c) 12. (d)13. (c) 14. (e) 15. (c) 16. (c) 17. (a) 18. (c) 19. (a) 20. (c) 21. (c) 22. (b)23. (b) 24. (a) 25. (d) 26. (d) 27. (d) 28. (b) **29.** (b) **30.** (b) **31.** (a) 32. (a) **33.** (b) 34. (c) 35. (d) 36. (c) 37. (a) **38.** (a) **39.** (b) 40. (c) 42. (c) **41.** (b) 43. (a) 44. (c) 45. (c) 46. (c) 47. (c) 48. (b) **49.** (d) **50.** (d) 51. (c) 52. (b) 53. (d) 55. (c) 54. (b) 56. (d) **57.** (a) 58. (a) **59.** (c) 60. (c) 61. (c) 62. (b) 63. (b) 64. (d) 65. (b) 66. (a) 67. (a) 68. (d) 69. (b) **70.** (b) 71. (b) 72. (a) 73. (c) 74. (d) 75. (b) 76. (b) 77. (c) 78. (b) 79. (a) 80. (b) 81. (a) 82. (c) 83. (d) 84. (b) 85. (d) 86. (c) 87. (c) 88. (b) **89.** (d) 90. (d) 91. (c) 92. (a) 93. (a) 94. (a) 95. (a) 96. (c) 97. (c) 98. (d) 99. (d) 100. (d)101. (d) 102. (d) 103. (c) 104. (c) 105. (b) 106. (d) 107. (a) 108. (b) 109. (d) 110. (a) 111. (c) 112. (c) 113. (c) 114. (c) 115. (b) 116. (c) 117. (a) 118. (d) 119. (b) 120. (c) 121. (b) 122. (d) 123. (c) 124. (c) 125. (b) 126. (c) 127. (c) 128. (d)129. (c) **131.** (a) **132.** (a) **133.** (c) 130. (b) 134. (d) 135. (b) 136. (d) 139. (b) 140. (d) 141. (b) 142. (a) 143. (d) 137. (b) 138. (d) 144. (c) 145. (b) 146. (a)

Numbers 21 SOLUTIONS 1. (Local Value) - (Face Value) = (7000 - 7) = 6993. 2. (Place Value of 7) - (Place Value of 3) = (7000 - 30) = 6970. 3. Required Sum = (100000 + 99999) = 199999. 4. Required Remainder = (10000 - 999) = 9001. 5. 5978 + 6134 + 7014 = 19126. 6. 18265 + 2736 + 41328 = 62329.7. 39798 + 3798 + 378 = 43974. 8. 9358 - 6014 + 3127 = (9358 + 3127) - 6014 = (12485 - 6014) = 6471.9. 9572 - 4018 - 2164 = 9572 - (4018 + 2164) = (9572 - 6182) = 3390.10. Let 7589 - x = 3434. Then, x = (7589 - 3434) = 4155. 11. Let 9548 + 7314 = 8362 + x. Then, $16862 = 8362 + x \iff x = (16862 - 8362) = 8500$. 12. Let 7845 - x = 8461 - 3569. Then, $7845 - x = 4892 \iff x = (7845 - 4892) = 2953$. 13. Let 3578 + 5729 - x486 = 5821. Then, $9307 - x486 = 5821 \iff x486 = (9307 - 5821) \iff x486 = 3486 \iff x = 3$. 14. $6x43 - 46y9 = 1904 \iff 6x43 = 1904 + 46y9$ [1 + y = 4 \iff y = 3] $\Leftrightarrow 6x43 = 1904 + 4639 = 6543$ [: y = 3] $\Leftrightarrow x = 5.$ Elefter a reduct 1 1 15. We may represent the given sum, as shown. $\therefore \quad 1 + A + C - B = 12 \quad \Leftrightarrow \quad A + C - B = 11.$ 5 A 9 Giving maximum values to A and C, i.e., C 6 -9 B 2 7 A = 9 and C = 9, we get B = 7. 8 2 3 16. Let x + (10 + x) + (20 + x) + (10x + 3) + (10x + 1) = 200 + 10 + x. Required combon - 42738 Then, $22x = 176 \iff x = 8$. $17. 5358 \times 51 = 5358 \times (50 + 1) = (5358 \times 50) + (5358 \times 1) = (267900 + 5358) = 273258.$ 18. $360 \times 17 = 360 \times (20 - 3) = (360 \times 20) - (360 \times 3) = (7200 - 1080) = 6120.$ **19.** $587 \times 999 = 587 \times (1000 - 1) = (587 \times 1000) - (587 \times 1) = (587000 - 587) = 586413.$ **20.** $469157 \times 9999 = 469157 \times (10000 - 1) = (469157 \times 10000) - (469157 \times 1)$ = (4691570000 - 469157) = 4691100843. 21. $8756 \times 99999 = 8756 \times (100000 - 1) = (8756 \times 100000) - (8756 \times 1)$ = (875600000 - 8756) = 875591244. 22. $(112 \times 5^4) = \frac{1120000}{1000}$ (see the rule) = $\frac{1120000}{10000} = 70000$. 2^4 (acc the rate) = 16 = 000 (c + 100) + (c + 100) + (c + 100) = 16 = 000 (c + 100) + (c + 100) = 000 (c + 23. $935421 \times 625 = 935421 \times 5^4 = \frac{9354210000}{2^4}$ (see the rule) = 9354210000 $\frac{54210000}{16} = 584638125.$ 24. $12846 \times 593 + 12846 \times 407 = 12846 \times (593 + 407) = 12846 \times 1000 = 12846000$. **25.** $(1014 \times 986) = (1000 + 14) \times (1000 - 14) = (1000)^2 - (14)^2 = 1000000 - 196 = 999804.$ **26.** $(1307 \times 1307) = (1307)^2 = (1300 + 7)^2 = (1690000 + 49 + 18200) = 1708249.$ **27.** $(1399 \times 1399) = (1399)^2 = (1400 - 1)^2 = (1400)^2 + 1^2 - 2 \times 1400 \times 1$ = 1960000 + 1 - 2800 = 1960001 - 2800 = 1957201.

28.
$$(106 \times 106 + 94 \times 94) = \frac{1}{2} \times 2(a^2 + b^2) = \frac{1}{2} [(a + b)^2 + (a - b)^2]$$

 $= \frac{1}{2} ((106 + 94)^2 + (106 - 94)^2] = \frac{1}{2} \cdot ((a - b)^2 + (12)^2)$
 $= \frac{1}{2} (40000 + 144) = \frac{1}{2} (40144) = 20072.$
29. $(217 \times 217 + 183 \times 183) = \frac{1}{2} \times 2(a^2 + b^2) = \frac{1}{2} \cdot [(a + b)^2 + (a - b)^2]$
 $= \frac{1}{2} \cdot ((217 + 183)^2 + (217 - 183)^2] = \frac{1}{2} ((400)^2 + (34)^2)$
 $= \frac{1}{2} \cdot ((217 + 183)^2 + (217 - 183)^2] = \frac{1}{2} ((400)^2 + (34)^2)$
 $= \frac{1}{2} \cdot (10000 + 1156) = \frac{161156}{2} = 80678.$
30. $12345679 \times 72 = 12345679 \times (100 - 28) = 12345679 \times (30 - 2)]$
 $= 1234567900 - (12345679 \times (30 - 2))$
 $= 2334567900 - (12345679 \times (30 - 2))$
 $= 2334567900 - (12345679 \times (30 - 2))$
 $= 1234567900 - (12345679 \times (30 - 2))$
 $= 2334567900 - (12345679 \times (30 - 2))$
 $= 2334567900 - (12345679 \times (30 - 2))$
 $= 1234567900 - (12345679 \times (30 - 2))$
 S_0 the required number is 991014.
34. 967 = 3 \times 7 \times 47.
 S_0 required number must be divisible by a ont consisting entirely
 of fives is 555555 by 13, we get 42735 as quotient.
 \therefore Correct answer is (c).
35. By hit and trial, we find that a number exactly divisible by 7 and consisting entirely
 of nines is 999999. Number of digits in it = 6.
37. $-\frac{95}{19} = -5.$
38. Let $\frac{t}{48} = 78$. Then, $x = (148 \times 78) = 11544.$
 \therefore Required digit = 1.
39. Let the one-digit numbers be $x, y, z.$
 Sum of all possible 2-digit numbers when divided by sum of one-digit numbers
 $= (10x + y) + (10x + x) + (10y + x) + (10y$

Numbers 43. Sum of two odd numbers is always even. gib drog of the two is light find 44. Product of two odd numbers is always odd. 45. n^3 is odd \implies n is odd and n^2 is odd. 46. The least prime number is 2. 47. Prime numbers less than 70 are : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 and 67. 63. $x^{4n} = (2^4)^n$ or $(4^4)^n$ or $(6^4)^n$ or $(8^4)n$. Their number is 19. 48. There is only one even prime number, namely 2.5 of that does not generally **49.** Required sum = (61 + 67 + 71 + 73) = 272. 50. 100 is divisible by 2, so it is not prime. 101 is not divisible by any of the numbers 2, 3, 5, 7. So, it is prime. Hence, the smallest 3-digit prime number is 101. 51. 161 is divisible by 7. So, it is not prime. 221 is divisible by 13. So, it is not prime. Now, $20 > \sqrt{373}$. Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. And, 373 is not divisible by any of them. So, 373 is prime. Since 437 is divisible by 19, so it is not prime. **52.** $(2 \times 1 + 1) = 3$, $(2 \times 2 + 1) = 5$, $(2 \times 3 + 1) = 7$, $(2 \times 4 + 1) = 9$, which is not prime. $\therefore n = 4.$ **53.** $x + (x + 36) + y = 100 \iff 2x + y = 64.$ $\therefore \quad 2x+2=64 \quad \Rightarrow \quad x=31.$ Third prime number = (x + 36) = (31 + 36) = 67. 54. Let the given prime numbers be a, b, c, d. Then, abc = 385 and bcd = 1001. abc 385 $\frac{a}{d} = \frac{5}{13}$. So, a = 5, d = 13. bed 1001 55. Numbers satisfying the given conditions are 405, 415, 425, 435, 445, 455, 465, 475, 485, 495 and 500 to 599. Number of such numbers = (10 + 100) = 110. 56. Required numbers from 200 to 300 are 207, 217, 227, 237, 247, 257, 267, 270, 271, 272, 273, 274, 275, 276, 278, 279, 287, 297. Their number is 18. Similarly, such numbers between 300 and 400 are also 18 in number. \therefore Total number of such numbers = 36. 57. Required digit = Unit digit in $(4 \times 8 \times 7 \times 3) = 2$. **58.** Required digit = Unit digit in $(1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9) = 0$. 59. $(9 \times 6 \times 4) = 216$. In order to obtain 2 at the unit place, we must multiply 216 by 2 or 7. .. Of the given numbers, we have 7. 60. Unit digit in $(3127)^{173}$ = Unit digit in $(7)^{173}$. Now, 7⁴ gives unit digit 1. $(7)^{173} = (7^4)^{43} \times 7^1$. Thus, $(7)^{173}$ gives unit digit 7.55 and much benupall 61. Unit digit in 7^4 is 1. :. Unit digit in 7^{68} is 1. = [1 × 7 × 7 × 7 gives unit digit 3] Unit digit in 7^{71} is 3. Again, every power of 6 will give unit digit 6.000 and a set at 180 at ... Unit digit in 3⁴ is 1. Unit digit in 3⁶⁴ is 1. Unit digit in 3⁶⁵ is 3. .

Unit digit in $(7^{71} \times 6^{59} \times 3^{65}) =$ Unit digit in $(3 \times 6 \times 3) = 4$

62. Unit digit in 7⁴ is 1. So, unit digit in 7⁹² is 1. a reading a blo over 10 multi and ... Unit digit in 7⁹⁵ is 3. bbo receives a [:: Unit digit in $1 \times 7 \times 7 \times 7$ is 3] Unit digit in 34 is 1. 55. a² is odd = a is add and a² is odd ∴ Unit digit in 3⁵⁶ is 1. ∴ Unit digit in 3⁵⁸ is 9. :. Unit digit in $(7^{95} - 3^{58}) = (13 - 9) = 4$. 63. $x^{4n} = (2^4)^n$ or $(4^4)^n$ or $(6^4)^n$ or $(8^4)n$. Clearly, the unit digit in each case is 6. **64.** $(3 \times 5)^{12} \times (2 \times 7)^{10} \times (10)^{25} = (3 \times 5)^{12} \times (2 \times 7)^{10} \times (2 \times 5)^{25}$ $= 3^{12} \times 5^{12} \times 2^{10} \times 7^{10} \times 2^{25} \times 5^{25} = 2^{35} \times 3^{12} \times 5^{37} \times 7^{10}$ Total number of prime factors = (35 + 12 + 37 + 10) = 94. **65.** Given Exp. = $a^2 + b^2 + 2ab$, where a = 397 and b = 104 we add to be 181 $= (a + b)^2 = (397 + 104)^2 = (501)^2 = (500 + 1)^2 = (500)^2 + 1^2 + 2 \times 500 \times 10^2$ = 250000 + 1 + 1000 = 251001.66. Given Exp. = $a^2 + b^2 - 2ab$, where a = 186 and b = 159 $= (a - b)^2 = (186 - 159)^2 = (27)^2$ $= (20 + 7)^2 = (20)^2 + 7^2 + 2 \times 20 \times 7 = 400 + 49 + 280 = 729.$ 67. Given Exp. = $(a + b)^2 - 4ab$, where a = 475 and b = 425 $= (a - b)^2 = (475 - 425)^2 = (50)^2 = 2500.$ **68.** $20z = (64)^2 - (36)^2 \iff 20z = (64 + 36)(64 - 36)$ $\Leftrightarrow \quad 20z = 100 \times 28 \quad \Leftrightarrow \quad z = \frac{100 \times 28}{20} = 140.$ **69.** Let $(46)^2 - x^2 = 4398 - 3066$. Then, $(46)^2 - x^2 = 1332 \iff x^2 = (46)^2 - 1332 = (2116 - 1332)$ $\Leftrightarrow x^2 = 784 \iff x = \sqrt{784} = 28.$ 70. Given Exp. = $\frac{(a+b)^2 + (a-b)^2}{(a^2+b^2)} = \frac{2(a^2+b^2)}{(a^2+b^2)} = 2.$ 71. Given Exp. = $\frac{(a+b)^2 - (a-b)^2}{ab} = \frac{4ab}{ab} = 4.$ 72. We know that : $(1 + 2 + 3 + + n) = \frac{n(n+1)}{2}$. :. $(1 + 2 + 3 + \dots + 45) = \left(\frac{45 \times 46}{2}\right) = 1035.$ 73. Required numbers are 2, 4, 6, ..., 30. This is an A.P. containing 15 terms. :. Required sum = $\frac{n}{2}$ (first term + last term) = $\frac{15}{2}(2+30) = 240$. 74. (51 + 52 + 52 + 52 + 52) 74. (51 + 52 + 53 + + 100) Hard they by a low a to remove your many filled $= (1 + 2 = 3 + \dots + 100) - (1 + 2 + 3 + \dots + 50)^{2}$ at the state $=\left(\frac{100\times101}{2}-\frac{50\times51}{2}\right)=(5050-1275)=3775.$

75. Every such number must be divisible by L.C.M. of 4, 5, 6, i.e. 60. Such numbers are 240, 300, 360, 420, 480, 540. and hear 19 4 111 Clearly, there are 6 such numbers. 76. Required numbers are 102, 108, 114,, 996. This is an A.P. with a = 102 and d = 6. Let the number of its terms be n. Then, $a + (n - 1) d = 996 \iff 102 + (n - 1) \times 6 = 996 \iff n = 150.$ 77. $2^2 + 4^2 + \dots + 20^2 = (1 \times 2)^2 + (2 \times 2)^2 + (2 \times 3)^2 + \dots + (2 \times 10)^2$ $= 2^2 \times 1^2 + 2^2 \times 2^2 + 2^2 \times 3^2 + \dots + 2^2 \times 10^2$ A 1412-5+7+3-211 $= 2^2 [1^2 + 2^2 + 3^2 + \dots + 10^2]$ $= 4 \times \frac{10 \times 11 \times 21}{c} = 4 \times 385 = 1540.$ 78. $11^2 + 12^2 + 13^2 + \dots + 20^2$ $= (1^2 + 2^2 + 3^2 + \dots + 20^2) - (1^2 + 2^2 + 3^2 + \dots + 10^2)$ $\frac{20(20+1)(40+1)}{6} - \frac{10(10+1)(20+1)}{6} \right] = 2485.$ = 79. 1 + x + 5 + 4 + 8 = (18 + x). Clearly, when x = 0, then sum of digits is divisible by 3. 80. Let the required number be 357y25x. Then, for divisibility by 5, we must have x = 0 or x = 5. Case I. When x = 0. The metric are considered by a side of the rest of the set of the Then, sum of digits = (22 + y). For divisibility by 3, (22 + y) must be divisible by 3. \therefore y = 2 or 5 or 8.5 more versionary in a time SCI of surface is redenant A .. Numbers are (0, 2) or (0, 5) or (0, 8). Case II. When x = 5. Then, sum of digits = (27 + y). For divisibility by 3, we must have y = 0 or 3 or 6 or 9. .. Numbers are (5, 0) or (5, 3) or (5, 6) or (5, 9). So, correct answer is (b). It aldress to be the test of and any add to people 81. Let the number be 5x2. Clearly, it is divisible by 2. h long is in a stand Now, 5 + x + 2 = (7 + x) must be divisible by 3. So, x = 2. 82. The given number is divisible by 8, if the number 6x2 is divisible by 8.000 80 Clearly, the least value of x is 3. denote the base do - would be such 83. (4 + 5 + 1 + x + 6 + 0 + 3) = 19 + x. Clearly, x = 8. The second bound of the second of the 84. Taking the sum of the digits, we have : $S_1 = 9, S_2 = 12, S_3 = 18, S_4 = 9, S_5 = 21, S_6 = 12, S_7 = 18, S_8 = 21, S_9 = 15, S_{10} = 24.$ Clearly, S₂, S₅, S₆, S₈, S₉, S₁₀ are all divisible by 3 but not by 9. So, the number of required numbers = 6. (b) (2+6+4) - (4+5+2) = 1 (No) 85. (a) (1 + 6 + 3) - (2 + 5 + 4) = 1 (No) (b) (2+6+1) - (2+5+4) = 0 (Yes). (d) (4+6+1) - (2+5+4) = 0 (Yes). (c) (4 + 6 + 1) - (2 + 5 + 3) = 1 (No) 86. (6+5+3+8) - (x+2+6) = (14-x). Now, (14-x) is divisible by 11, when x = 3. 87. (4 + 7 + 6 + x + y + 0) = [17 + (x + y)]. Also, (0 + x + 7) - (y + 6 + 4) = (x - y - 3). Now, [17 + (x + y)] must be divisible by 3 and (x - y - 3) is either 0 or divisible by 11. Clearly, x = 8 and y = 5 satisfy both the conditions. (b) 2079 is divisible by 3, 7, 9 and 11. **88.** (a) 639 is not divisible by 7. (d) 37911 is not divisible by 9. (c) 3791 is not divisible by 3. .: Correct answer is (b).

89. Since 4864 is divisible by 4, so 9P2 must be divisible by 3. ∴ (11 + P) must be divisible by 3. One not find the end and there ∴ Least value of P is 1. 90. The required number should be divisible by 3 and 8. (a) 718 is not divisible by 8. (b) 810 is not divisible by 8 (c) 804 is not divisible by 8. her the number of its turns look. Then, (d) Sum of digits = 27, which is divisible by 3. And, 736 is divisible by 8. So, given number is divisible by 3 and 8. 91. The given number should be divisible by both 9 and 8. :. (4 + 2 + 5 + 7 + 3 + x) = (21 + x) is divisible by 9 and (73x) is divisible by 8. $\therefore x = 6.$ 92. The required number should be divisible by both 9 and 11. Clearly, 114345 is divisible by both 9 and 11. So, it is divisible by 99. 93. The given number will be divisible by 99 if it is divisible by both 9 and 11. Now, (3 + 4 + 2 + 2 + 2 + 1 + 3 + x + y) = 17 + (x + y) must be divisible by 9. Also, (y + 3 + 2 + 2 + 3) - (x + 1 + 2 + 4) = (y - x + 3) must be 0 or divisible by 11. $\therefore x + y = 10 \text{ and } y - x + 3 = 0.$ Clearly, x = 1, y = 9 satisfy both these equations. 94. Since 653xy is divisible by 5 as well as 2, so y = 0. Now, 653x0 must be divisible by 8. So, 3x0 must be divisible by 8. This happens when x = 2. x + y = (2 + 0) = 2.95. A number is divisible by 132, if it is divisible by each one of 11, 3 and 4. Clearly, 968 is not divisible by 3. None of 462 and 2178 is divisible by 4. Also, 5184 is not divisible by 11. Each one of remaining 4 is divisible by each one of 11, 3 and 4 and therefore, by 132. 96. Clearly, 6897 is divisible by both 11 and 19. 97. None of the numbers in (a) and (c) is divisible by 2. And several locates of Number in (b) is not divisible by 3. In the division of the second se Clearly, 510510 is divisible by each prime number between 1 and 17. 98. Clearly, 325325 is divisible by all 7, 11 and 13. 99. Sum of digits = 35 and so it is not divisible by 3. such a tensi of transfer (Sum of digits at odd places) - (Sum of digits at even places) = (19 - 16) = 3, not divisible by 11. So, the given number is neither divisible by 3 nor by 11. 100. Since 111111 is divisible by each one of 7, 11 and 13, so each one of given type of numbers is divisible by each one of 7, 11, 13, as we may write, $222222 = 2 \times 111111$, $3333333 = 3 \times 1111111$, etc. 101. Smallest 3-digit prime number is 101. Clearly, 2525 = 25 × 101; 3232 = 32 × 101, etc. ... Each such number is divisible by 101. 102. $256256 = 256 \times 1001$; $678678 = 678 \times 1001$, etc. So, any number of this form is divisible by 1001. **103.** Required number = $1 \times 2 \times 3 \times 4 = 24$. 105. Let the three consecutive odd numbers be (2x + 1), (2x + 3) and (2x + 5). Their sum = (6x + 9) = 3 (2x + 3), which is always divisible by 3.

106.	Let the two consecutive odd integers be $(2x + 1)$ and $(2x + 3)$.	
	Then, $(2x + 3)^2 - (2x + 1)^2 = (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3)^2 - (2x + 1)^2 = (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x - 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x + 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 - 2x + 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 + 2x + 1)(2x + 3 + 2x + 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 + 2x + 1)(2x + 3 + 2x + 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 + 2x + 1)(2x + 3 + 2x + 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 + 2x + 1)(2x + 3 + 2x + 1) = (4 + 4) \times (2x + 3 + 2x + 1)(2x + 3 + 2x + 1)(2x + 3x + 2x + 1) = (4 + 4) \times (2x + 3x + 2x + 1)(2x + 3x + 2x + 1) = (4x + 4) \times (2x + 3x + 2x + 1)(2x + 3x + 1)(2x + 1)(2x + 3x + 1)(2x + 1)($	
	= 8 $(x + 1)$, which is always divisible by 8.	
107.	Let the required number be x.	
	Then $(11x + 11) - 11(x + 1)$ is divisible by 13 So $x = 12$	
108.	Let the 3-digit number be xyz. Then,	
	(100x + 10y + z) - (x + y + z) = 99x + 9y = 9 (11x + y), which is divisible by	9.
109.	Putting $x = 5$ and $y = 1$, we get $(3x + 7y) = (3 \times 5 + 7 \times 1) = 22$, which is divising 11.	
	\therefore 4x + 5y = (4 × 5 + 5 × 1) = 25, which is not divisible by 11.	
	x + y + 4 = (5 + 1 + 4) = 9, which is not divisible by 11.	
	$4x - 9y = (4 \times 5 - 9 \times 1) = 11$, which is divisible by 11.	
	Lorging number of 4 digits divisible by 7 is (1999 - 3) - work (
110.	$ \begin{array}{c} 4 \ a \ 3 \\ 9 \ 8 \ 4 \end{array} \right\} \implies a + 8 = b \implies b - a = 8 $	
	135.7	
	Aumber = 11 [4 > (1 + 2) = (1 + 4) = (1 + 4) = (1 + 2) =	
	Also, 13b7 is divisible by 11. $\therefore (7+3) - (b+1) = (9-b) \implies (9-b) = 0 \implies b = 9.$	
111	P 1 1 (05 0) (00 P) 00	
	Required number = Product of first three multiples of $3 = (3 \times 6 \times 9) = 162$.	
	On dividing 1000 by 45, we get remainder = 10.	138
110.	\therefore Required number to be added = $(45 - 10) = 35$. spanned belops	
114	On dividing 803642 by 11, we get remainder = 4. 10° = 0.	
114.	∴ Required number to be added = $(11 - 4) = 7$.	
115	On dividing 11158 by 77 we get remainder - 70	
110.	Bequired number to be added = $(77 - 70) = 7$.	
116	On dividing 6700 by 9 we get remainder = 4	
110.	· Required number to be subtracted = 4	
117	On dividing 427398 by 15, we get remainder = 3.	137
	∴ Required number to be subtracted = 3.	
118.	On dividing 13294 by 97, we get remainder = 5.	
119.	Ober the 5 of (sum of numbers) is divisible by 15	
	. Sum of numbers must be divisible by 3.	
	Now, (250 + 341) = 591 is divisible by 3. So, required pair is 250, 341.	
120.	Required number is divisible by 72 as well as by 112, if it is divisible by their which is 1008.	LCM,
	Now, 1008 when divided by 72, gives quotient = 14.	
	Required number = 14.	
121.	Let it be <i>n</i> times. Then, $(1111 - 99n) < 99$.	
	By hit and trial, we find that $n = 11$.	
122.	. On dividing 457 by 11, remainder is 6.	
	Required number is either 451 or 462. Nearest to 456 is 462.	

123	. On dividing 99547 by 687, the remainder is 619, which is more than half o	f 687.
	So, we must add $(687 - 619) = 68$ to the given number.	
	∴ Required number = (99547 + 68) = 99615.	
124	. Largest number of 5 digits = 99999. On dividing 99999 by 99, we get 9 as ren	nainder.
	Required number = (99999 - 9) = 99990.	1.0.0
125	. Smallest number of 5 digits = 10000.	
	On dividing 10000 by 476, we get remainder $= 4$.	
	:. Required number = $[10000 + (476 - 4)] = 10472.$	
126.	. Required number = $999 \times 366 + 103 = (1000 - 1) \times 366 + 103 = 366000 - 366$ = 365737.	+ 103
127.	= 365737. 4150 = $55 \times x + 25 \iff 55x = 4125 \iff x = \frac{4125}{55} = 75.$	
128.	Required number = $(555 + 445) \times 2 \times 110 + 30 = 220000 + 30 = 220030$.	
129.	Largest number of 4 digits = 9999. On dividing 9999 by 7, we get remainde	r - 3
	Largest number of 4 digits divisible by 7 is $(9999 - 2) = 9096$	
	Let $(9996 - x + 10)$ be divisible by 3. By hit and trial, we find that $x = 7$.	
	\therefore Required number = (9996 - 7) = 9989	
130.	Number = $(114 \times Q) + 21 = 19 \times 6 \times Q + 19 + 2 = 19 \times (6Q + 1) + 2$.	
	required remainder = 2.	
131.	Number = $(296 \times Q) + 75 = (37 \times 8Q) + (37 \times 2) + 1 = 37 \times (8Q + 2) + 1$.	
	. Required remainder = 1.	
132.	(1-2) + 20 = 1 + (1-2) + (1+2) = 1 + (1-2) + 2	
	\therefore Required remainder = 2.	
133.	Number = $(899 \times Q) + 63 = (29 \times 31 \times Q) + (29 \times 2) + 5 = 29 \times (31Q + 2) + 5$.	
	.: Required remainder = 5.	
134.	Number = $(31 \times Q)$ + 29. Given data is inadequate.	
135.	Given number = $13p + 11$. And, Given number = $17a + 9$	
	\therefore 13p + 11 = 17q + 9 \Leftrightarrow 17q - 13p = 2	
	by fint and trial, we find that $p = 26$ and $q = 20$.	
190	\therefore Required number = (13 × 26 ± 11) = 340	
	Divisor = $(5 \times 46) = 230$. Also, $10 \times Q = 230 \implies Q = 23$. And, R = 46. ∴ Dividend = $(230 \times 23 + 46) = 5336$.	
137.	Let the smaller number be x. Then, larger number = $(1365 + x)$.	-111
	$\therefore 1365 + x = 6x + 15 \iff 5x = 1350 \iff x = 270.$	
199	Hence, the required number is 270. The set of the set o	
100.	Dividend = $(12 \times 35) = 420$. Now, dividend = 420 and divisor = 21.	
	$\therefore \text{Correct quotient} = \frac{420}{21} = 20.$	
139.	Let $n = 4q + 3 \implies 2n = 8q + 6 = (8q + 4) + 2 \implies 2n = 4(2q + 1) + 2$.	
	So, when $2n$ is divided by 4, remainder = 2.	
140.	Let $x = 6q + 3$. Then, $x^2 = (6q + 3)^2 = 36q^2 + 36q + 9 = 6(6q^2 + 6q + 1) + 3$. So, when x^2 is divided by 6, remainder = 3.	
141.	$4 \times x$	
	5 7 1	
	1-4 If any both both we for a both both of the set of t	
	$\therefore y = (5 \times 1 + 4) = 9$ R at subminum, (1 vd Vd+ gallerib mO).	
	\therefore $x = (4y + 1) = (4 \times 9 + 1) = 37$, to 1.34 tables is reduced betteps?	

	5	37	
	4	7 - 2	
the state of the		1 - 3	
		Respective remainders are 2, 3.	
142.	4	x	
	5	Pactors and Moltiplas : Il a number a divides another number 2 m Rel	
	6	that a is a factor of b. In this case, b is called a multiple of $n = z$	
	0	Highest Common Better (H.C.F.) or Greatest Common Measpie 13	
nhezs	191		
		is the groatest number that divides each of them exactly.	
unt o	bon	1. Pactorination Mathed: Express each and of the given nonhers as the	
143.	5	prime factors The product of least powers of dumman prime factors Xin	
	9	2. Division Method : Support as have to find the H.C.F. of two gives 4 - y h	
		z = 8 metric with shorth, we want for a similar or the division of the second state	
		1 1 1 12 interest as remainder The last drives is the required at the	
		H.C.E of times numbers Then, H.C.E is (H.C.F. of any two) and (the third	
		gives the H.G.R. of three given municipal	3
	No	ow, 1169 when divided by 585 gives remainder = 584.	
144.	Le	t = 3a + 1 and let $a = 2p + 1$. Then, $n = 3(2p + 1) + 1 = 6p + 4$.	
		The number when divided by 6, we get remainder $= 4$.	
145.	46	$1 \pm 462 \pm 463 \pm 464 = 461 (1 \pm 4 \pm 4^2 \pm 4^3) = 4^{61} \times 85 = 4^{60} \times 340$, which is	clear
	div	visible by 10.	
	D	atting $x = 2$, we get $2^2 (2^2 - 1) = 12$. So, $x^2 (x^2 - 1)$ is always divisible by	12.