T.E. Sem 5 (Rev) Etrx Con. 5484-08.

Engineering Electromagnetics

03/12/08

RC-8885

(REVISED COURSE)

(3 Hours)

[Total Marks: 100

N.	B. : ((1)	Ouestion	No. 1	is	Compulsory	
----	--------	-----	----------	-------	----	------------	--

- (2) Attempt any four questions from remaining.
- (3) Vector notation should be used wherever necessary.
- (4) Assumptions made should be clearly stated.
- 1. (a) State Poynting theorem and derive expression for instantaneous Poynting vector.
 - (b) Give Maxwell's equations for time varying fields in differential and integral forms for good conductors and good dielectrics.
 - (c) For free space prove that the value of intrinsic impedance is equal to 377 Ω . 5
 - (d) Derive wave equation for homogeneous unbounded source free medium starting from Maxwell's equations.
- 2. (a) Derive the equation for characteristic impedance of the two wire line. Find the characteristic impedance if $R = 2 \Omega/m$, L = 8 nH/m, G = 0.5 milli mho/m, C = 0.23 pF/m.
 - (b) Using Smith Chart find the input impedance and reflection coefficient at a point 0.64λ from load $z_{\rm L}=(75-j~25)\Omega$. Given Characteristic impedance = 50 Ω .
- (a) Derive the expressions for the reflection and transmission coefficients in case of reflection from perfect dielectric at (i) Normal incidence (ii) Oblique incidence.
 - (b) Derive boundary conditions for electric and magnetic fields at boundary of two dielectric media.
- Explain the radiation for a short dipole in free space. Show that the power radiated by dipole is—

 $P = 80 \Pi^2 I^2_{rms} (dl/\lambda)^2$

Hence obtain the expression for the radiation resistance.

- 5. For an electromagnetic wave travelling between a pair of parallel perfectly conducting planes of infinite extent in y and z directions:—
 - (i) Analyse the TE_{run} modes after arriving at field components of TE mode.
 - (ii) Analyse the TM_{run} modes after arriving at field components of TM mode.

6.	(a)	Obtain the expression for field components of a TE wave propagating throug rectangular waveguide.				
	(b)	What is skin effect? Define skin depth how is it related to the attenuation constant.	6			
	(c)	What is uniform plane wave? Explain what is meant by Transverse electromagnetic wave.	4			
7.	Wri (a) (b) (c) (d)	Surface impedance of conductor	20			