SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech-All Branches Except Biogroups Title of the Paper: Engineering Mathematics - I Max. Marks: 80

Sub. Code: 6C0002 (2006/07/08/09)
Date: 06/12/2010

Time: 3 Hours
Session: FN

$$
\begin{gathered}
\text { PART - A } \quad(10 \times 2=20) \\
\text { Answer ALL the Questions }
\end{gathered}
$$

1. Find the sum of the squares of the eigen values of $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$.
2. Determine the nature of the Quadrative form without reducing to the canonical form:

$$
x^{2}+3 y^{2}+6 z^{2}+2 x y+2 y z+4 x z .
$$

3. Find the sum to infinity of the series $1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{4}\right)+4\left(\frac{1}{8}\right)+\ldots$
4. Find the coefficient of x^{10} in the expansion of

$$
\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \ldots \infty\right)+\left(\frac{x}{1!}+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \infty\right) .
$$

5. Find the curvature of the circle $x^{2}+y^{2}=25$.
6. Find the envelope of the family of lines $y=m x+a m^{2}, m$ being the parameter.
7. Expand $e^{x} \sin y$ in powers of x and y up to second degree terms.
8. If $x=u(1-v), y=u v$ find $J\left(\frac{x, y}{u, v}\right)$.
9. Solve $\left(D^{2}+4\right) y=e^{x}$.
10. Solve the equation $x^{2} y^{\prime}-x y^{\prime}+y=0$.

$$
\begin{array}{cl}
\text { PART - B } & (5 \times 12=60) \\
\text { Answer All the Questions } &
\end{array}
$$

11. Reduce the quadratic form $2 x^{2}+6 y^{2}+2 z^{2}+8 x z$ to canonical form by orthogonal reduction. Find also the nature of the quadratic form.
(or)
12. (a) Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
(b) Verify Cayley Hamilton for the marix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$
13. (a) When x is small, show that $\sqrt{x^{2}+4}-\sqrt{x^{2}+1}=1-\frac{1}{4} x^{2}+\frac{7}{64} x^{4}$, nearly.
(b) Find the sum to infinity of the series $\frac{1}{1!}+\frac{1+5}{2!}+\frac{1+5+5^{2}}{3!}+\ldots \infty$ (or)
14. Show that $\frac{1}{1.2 .3}+\frac{5}{3.4 .5}+\frac{9}{5.6 .7}+\frac{13}{7.8 .9}+\ldots \infty=\frac{5}{2}-3 \log 2$.
15. Find the equation of the circle of curvature of the curve $x^{2}+y^{3}=3 a x y$ at the point $\left(\frac{3 a}{2}, \frac{3 a}{2}\right)$
16. Find the evolute of the parabola $y^{2}=4 a x$ considering it as the envelope of its Normals.
17. (a) If $u=(x-y, y-z, z-x)$ prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
(b) Discuss the maxima and minima of the function, $u=x^{3} y^{2}(1-x-y)$.

(or)

18. (a) The temperature T at any point in space is $T=k x y z^{2}$ where k is a constant, find the highest temperature on the surface of the sphere $x^{2}+y^{2}+z^{2}=1$.
(b) Evaluate $\int_{0}^{\infty} e^{-x} \frac{\sin \alpha x}{x} d x$ using differentiation under the integral sign.
19. Solve $D x+y=\sin t, x+D y=\cos t$, given $x=2$ and $y=0$ at $t=0$. (or)
20. (a) Use the method of variation of parameters and solve $\left(D^{2}+1\right) y=x$.
(b) Solve $\left(D^{2}-4 D+13\right) y=e^{2 x} \cos 3 x$.
