SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY DEEMED UNIVERSITY

Course: B.E./B.Tech.
Title of the paper: Engineering Mathematics - I
Semester: I
Max. Mark: 80
Sub. Code: ET102/ET102A (2002/2003/2004/2005)
Time: 3 Hours
PART - A
$(10 \times 2=20)$

Answer ALL the Questions

1. Show that $\frac{\cos 3 \theta}{\cos \theta}=4 \cos ^{2} \theta-3$.
2. Find the real part of $\sin (x+i y)$.
3. Find the equation of the plane through the point $(4,5,-6)$ and parallel to the plane $x+3 y+5 z+6=0$.
4. Find the centre and radius of the sphere
$x^{2}+y^{2}+z^{2}+12 x-2 y-6 z+30=0$.
5. Define rank of a matrix.
6. Two eigen values of
$A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ are equal to 1 each. Find the third eigen value.
7. Evaluate $\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{6} x d x$
8. Evaluate $\int_{0}^{a} \int_{\mathrm{x}}^{\mathrm{a}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{dydx}$
9. Prove that $\lceil(1)=1$.
10. Evaluate $\beta[5 / 2,7 / 2]$.

Answer ALL the Questions

11. (a) Prove that $\cos ^{6} \theta=\frac{1}{32}[\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10]$.
(b) If $x+i y=\cos (A-i B)$, find the value of $\frac{x^{2}}{\operatorname{Cosh}^{2} B}+\frac{y^{2}}{\sinh ^{2} B}$ (or)
12. (a) Find the real and imaginary parts of $\tan ^{-1}(\alpha+i \beta)$.
(b) Prove that $\sin ^{5} \theta \cos ^{2} \theta=\frac{1}{26}[\sin 7 \theta-3 \sin 5 \theta+\sin 3 \theta+5 \sin \theta]$
13. (a) Find the image of a point $\mathrm{P}(-2,1,2)$ with respect to $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=10$.
(b) Find the shortest distance between the lines.

$$
\begin{gathered}
\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \text { and } \\
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \\
\text { (or) }
\end{gathered}
$$

14. (a) Find the equation of the plane through $(1,-2,1)$ and perpendicular to the planes $3 x+y+z-2=0$ and $x-2 y+z+4=0$
(b) Find the equation of the sphere that passes through the circle $x^{2}+y^{2}+z^{2}+3 x+y+2 z-2=0, x+3 y-2 z+1=0$ and cuts orthogonally the sphere $x^{2}+y^{2}+z^{2}+x-3 z-2=0$.
15. (a) Verify Cayley-Hamilton theorem for the matrix

$$
\mathrm{A}=\left[\begin{array}{llr}
7 & 2 & -2 \\
-6 & -1 & 2 \\
6 & 2 & -1
\end{array}\right]
$$

(b) Find the eigen values and eigen vectors of $\left[\begin{array}{rrr}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right]$
16. Reduce $6 x^{2}+3 y^{2}-4 x y-2 y z+4 x z+3 z^{2}$ into a canonical form by an orthogonal reduction. Discuss the nature of quadratic form.
17. (a) Prove that $\int_{0}^{\pi / 2} \log \sin x d x=\frac{-\pi}{2} \log 2$.
(b) Change the order of integration in $\int_{0}^{a} \int_{x}^{a}\left(x^{2}+y^{2}\right) d y d x$ and
hence evaluate. (or)
18. (a) If $I_{n}=\int_{0}^{a} x^{n} e^{-x} d x$, prove that $I_{n}-(n+a) I_{n-1}+a(n-1) I_{n-2}=0$
(b) Evaluate $\int_{0}^{a / \int_{0}^{a^{2}-x^{2}}} \int_{0}^{\frac{a^{2}-x^{2}-y^{2}}{d z d y d x}} \frac{a^{2}-x^{2}-y^{2}-z^{2}}{}$
19. (a) Prove that $\int_{0}^{\pi / 2} \sqrt{\sin \theta} \mathrm{~d} \theta \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{\sin \theta}}=\pi$
(b) Express $\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{4}}}$ in terms of gamma function.
20. (a) Prove that

$$
\frac{\beta(\mathrm{m}, \mathrm{n}+1)}{\mathrm{n}}=\frac{\beta(\mathrm{m}+1, \mathrm{n})}{\mathrm{m}}=\frac{\beta(\mathrm{m}, \mathrm{n})}{\mathrm{m}+\mathrm{n}}
$$

(b) Prove that $\int_{0}^{\infty} \frac{\mathrm{t}^{2} \mathrm{dt}}{1+\mathrm{t}^{4}}=\frac{\pi}{2 \sqrt{2}}$

