SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - Common to ALL Branches (Excepts to Bio Groups)
Title of the paper: Engineering Mathematics - I
Semester: I
Sub.Code: 6C0002(2006-2007-2008)
Date: 14-05-2009

Max.Marks: 80
Time: 3 Hours Session: AN

PART - A

Answer ALL the Questions
$(10 \times 2=20)$

1. Two Eigen values of the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ are equal to 1 each. Find the third Eigen value.
2. State Cayley-Hamilton Theorem.
3. Find k , if $\left(1+\frac{1}{2!}+\frac{1}{4!}+\ldots\right)^{2}=k+\left(1+\frac{1}{3!}+\frac{1}{5!}+\ldots\right)^{2}$.
4. Show that $\log _{3}^{e}-\log _{9}^{e}+\log _{27}^{e}-\log _{81}^{e}+\ldots=\log _{3}^{2}$.
5. Find the radius of curvature of the curve given by $y=e^{x}$ at $x=0$.
6. Find the envelope of the family of lines $y=m x+\frac{a}{m}$, m being the parameter.
7. If $x=r \cos \theta, y=r \sin \theta$, then find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
8. If $z=f(x+c t)+\phi(x-c t)$, show that $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
9. Solve $\left(D^{2}+4\right) y=0$.
10. Solve: $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$.

> PART - B
$(5 \times 12=60)$
Answer All the Questions
11. Reduce the quadratic form $2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}-4 x_{3} x_{2}$ to canonical form by an orthogonal transformation.
(or)
12. Verify Cayley-Hamilton Theorem for the matrix $A=\left(\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right)$ and hence find A^{-1}.
13. Prove that $\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\ldots=2 \log 2-1$.
(or)
14. Resolve $\frac{2 x^{2}+1}{\left(x^{2}+1\right)(x+1)}$ into partial fractions.
15. Find the evolute of the parabola $y^{2}=4 a x$.
(or)
16. Find the equation of the circle of curvature of the curve $\sqrt{x}+\sqrt{y}=\sqrt{a} a t\left(\frac{a}{4}, \frac{a}{4}\right)$.
17. A rectangular box, open at the top, is to have a volume of 32c.c. Find the dimensions of the box that requires the least material for its construction.
(or)
18. Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ upto $3^{\text {rd }}$ degree terms.
19. Solve the equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\tan a x$, by the method of variation of parameters.
(or)
20. (a) Solve: $\left(D^{2}-4 D+3\right) y=\sin 3 x$.
(b) Solve: $\left(x^{2} D^{2}-2 x D-4\right) y=32(\log x)^{2}$.

