SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech – Common to ALL Branches	
(Excepts to Bio Groups)	
Title of the paper: Engineering Mathematics - I	
Semester: I	Max.Marks: 80
Sub.Code: 6C0002(2006-2007-2008)	Time: 3 Hours
Date: 14-05-2009	Session: AN

PART - A $(10 \times 2 = 20)$ Answer ALL the Questions

- 1. Two Eigen values of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are equal to 1 each. Find the third Eigen value.
- 2. State Cayley-Hamilton Theorem.

3. Find k, if
$$\left(1+\frac{1}{2!}+\frac{1}{4!}+\ldots\right)^2 = k + \left(1+\frac{1}{3!}+\frac{1}{5!}+\ldots\right)^2$$
.

- 4. Show that $\log \frac{e}{3} \log \frac{e}{9} + \log \frac{e}{27} \log \frac{e}{81} + \dots = \log \frac{2}{3}$.
- 5. Find the radius of curvature of the curve given by $y = e^x at x = 0$.
- 6. Find the envelope of the family of lines $y = mx + \frac{a}{m}$, m being the parameter.
- 7. If $x = r \cos\theta$, $y = r\sin\theta$, then find $\frac{\partial(x, y)}{\partial(r, \theta)}$.

- 8. If $z = f(x + ct) + \phi(x ct)$, show that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$.
- 9. Solve $(D^2 + 4) y = 0$.
- 10. Solve: $x^2 y'' xy' + y = 0$.

PART – B $(5 \times 12 = 60)$ Answer All the Questions

11. Reduce the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 4x_3x_2$ to canonical form by an orthogonal transformation. (or)

12. Verify Cayley-Hamilton Theorem for the matrix $A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$ and hence find A⁻¹.

13. Prove that
$$\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \frac{1}{4.5} + \dots = 2\log 2 - 1.$$

(or)

14. Resolve $\frac{2x^2+1}{(x^2+1)(x+1)}$ into partial fractions.

- 15. Find the evolute of the parabola $y^2 = 4ax$. (or)
- 16. Find the equation of the circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}at \left(\frac{a}{4}, \frac{a}{4}\right).$

- 17. A rectangular box, open at the top, is to have a volume of 32c.c. Find the dimensions of the box that requires the least material for its construction.
- (or) 18. Expand $x^2y + 3y - 2$ in powers of (x - 1) and (y + 2) upto 3^{rd} degree terms.
- 19. Solve the equation $\frac{d^2 y}{dx^2} + a^2 y = \tan ax$, by the method of variation of parameters.
- (or) 20. (a) Solve: $(D^2 - 4D + 3) y = \sin 3x$.

(b) Solve: $(x^2D^2 - 2xD - 4)y = 32 (log x)^2$.