SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - (Common to ALL Branches)
Title of the paper: Engineering Mathematics - II
Semester: II
Sub.Code: 3ET202A-4ET202A-5ET202A
Date: 12-05-2009
Max.Marks: 80
Time: 3 Hours
Session: FN

PART - A $\quad(10 \times 2=20)$
Answer ALL the Questions

1. State the relation between the coefficients and roots of the equation

$$
\sum_{R=0}^{n} a_{R} \quad x^{R}=0\left(\text { where } \mathrm{a}_{\mathrm{R}} \text { real and } \mathrm{x} \text { complex }\right)
$$

2. Find the condition that the cubic $x^{3}-l x^{2}+m x-n=0$ should have its roots in semetric progression.
3. Define radius of curvature in Cartesion coordinates and its polar coordinates.
4. Define evolute and involute.
5. Find the particular integral of $\left(D^{2}+5 D+6\right) y=e^{x}$.
6. Let $f(x)$ be the particular integral of

$$
\frac{d^{3} y}{d x^{3}}+\frac{4 d y}{d x}=\sin 2 x \text { find } \lim _{x \rightarrow \frac{\pi}{2}} f(x)
$$

7. State Kirchhoff laws.
8. Define strut and column.
9. Define solenoidal vector function and irrotational motion.
10. If $F(t)=\left(5 t^{2}-3 t\right) \vec{i}+6 t^{3} \vec{j}-7 t \vec{k}$, then find $\int_{2}^{4} F(t) d t$

> PART - B
$(5 \times 12=60)$
Answer All the Questions
11. Transform the equation $\mathrm{x} 3-6 \mathrm{x} 2+5 \mathrm{x}+8=0$ into another in which the second terms in missing .Hence find the equation of its squared differences.
12. If α, β, γ be the roots of $x^{3}+p x+q=0$, show that
(a) $\alpha^{5}+\beta^{5}+\gamma^{5}=5 \alpha \beta \gamma(\beta \gamma,+\gamma \alpha+\alpha \beta)$
(b) $3 \in \alpha^{2} \in \alpha^{5}=\in \alpha^{3} \in \alpha^{4}$.
13. Prove that the radius of curvature at any point of the asteroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=\alpha^{\frac{2}{3}}$ in three times the length of the perpendicular from the origin to the tangent at that point.
(or)
14. A test on a square base of side x, has its sides vertical of height y and the top in a regular pyramid of height h. Find using the Lagrange's method of undetermined multiplies, x and y in terms of h, if the canvas required for its construction in is he minimum for the test to have a given capacity.
15. (a) $\left(D^{2}-1\right) y=x \sin 3 x+\cos x$
(b) Also find y when $\mathrm{x}=0$ and $\frac{d y}{d x}=1$ at $x=0$.
(or)
16. The small oscillations of a certain system with two degrees of freedom are given by the equations
$\mathrm{D}^{2} \mathrm{x}+3 \mathrm{x}-2 \mathrm{y}=0$,
$D^{2} x+D^{2} y-3 x+5 y=0$,
If $x=0, y=0, D x=3, D y=2$ when $t=0$,
find x and y when $\mathrm{t}=\frac{1}{2}$
17. Show that the differential equation for the current i in an electric circuit containing an inductance L and a resistance R in series and acted on by an electromotive force E sin wt satisfies the equation $L \frac{d i}{d t}+R i=E \sin w t$
(or)
18. A cantilever beam of length and weighing $w l c / u n i t$ is subject to a horizontal compressive force p applied at the free end. Taking the origin at the free end and y axis upwards, istablish the differential equation of the beam and hence find the maximum deflection
19. Using Stoke's theorem evaluate $\int_{c}[(x+y) d x+(2 x-z) d y+$ $(y+z) d z]$ where c is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.
(or)
20. Verify Divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-3 x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}_{\text {taken over the }}$ rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

