SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act,1956)
Course \& Branch: B. E/B. Tech - Common to ALL Branches
Title of the paper: Engineering Mathematics - II
Semester: II
Sub.Code: ET 202A (2002/2003/2004/2005)
Date: 04-12-2006

Max. Marks: 80
Time: 3 Hours
Session: AN
PART - A

Answer ALL the Questions

1. Find the condition that the roots of the equation $x^{3}+\mathrm{p} x^{2}+\mathrm{q} x+\mathrm{r}=0$ may be in Arithmetic progression.
2. Diminish by 3 the roots of $x^{4}+3 x^{3}-2 x^{2}-4 x-3=0$.
3. Find the radius of curvature at $x=\mathrm{c}$ on $x y=c^{2}$.
4. Define an evolute.
5. Find the Particular Integral of $\left(D^{2}+4\right) y=\sin 2 x$.
6. Solve $\left(D^{2}-6 D+9\right) y=6 e^{3 x}$.
7. Define simple Harmonic motion.
8. The whirling speed of a shaft of length ' l ' is given by

$$
\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}=\frac{\mathrm{p} \omega^{2}}{\mathrm{gEI}} \quad \mathrm{y} . \text { If } \alpha^{4}=\frac{\mathrm{p} \omega^{2}}{\mathrm{gEI}} \quad, \quad \text { find } y .
$$

9. Find the directional derivate of $\phi=4 x z^{2}+x^{2} y z$ at $(1,-2,1)$ in the direction of $2 \vec{i}+3 \vec{j}+4 \vec{k}$.
10. Find λ if $(2 x+y) \vec{i}+(z-\lambda y) \vec{j}+(2 \lambda z-x) \vec{k}$ is solenoidal

> PART - B
$(5 \times 12=60)$
Answer ALL the Questions
11. Solve $x^{5}+4 x^{4}+x^{3}+x^{2}+4 x+1=0$.
(or)
12. Solve $4 \mathrm{x}^{4}-20 x^{3}+33 x^{2}-2 x+4=0$.
13. Find the radius of curvature at θ on $x=3 \mathrm{a} \cos \theta-\mathrm{a} \cos 3 \theta$, $y=3 \operatorname{asin} \theta-\operatorname{asin} 3 \theta$.

(or)

14. Find the evolute of the ellipse $\frac{x^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$.
15. Solve $\frac{d x}{d t}+2 y=\sin 2 t, \frac{d y}{d t}-2 x=\cos 2 t$.
(or)
16. Solve $y^{\prime \prime}+4 y=\tan 2 x$ by the method of variation of parameters.
17. In an $L-C-R$ circuit, the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{{d t^{2}}^{2}}+R \frac{d q}{d t}+\frac{q}{c}=$ Esinpt. The circuit is tuned to resonance so that $\mathrm{p}^{2}=\frac{1}{\mathrm{LC}}$. If at $\mathrm{t}=0, \mathrm{i}=0$ and
$\mathrm{q}=0$, show that for small values of $\frac{\mathrm{R}}{\mathrm{L}}, \mathrm{i}=\frac{\mathrm{Et}}{2 \mathrm{~L}}$ sinpt.
18. A particle is executing a simple Harmonic motion $\frac{\mathrm{d}^{2} x}{\mathrm{dt}^{2}}=-\mu^{2} x$. At $\mathrm{t}=0, x=\mathrm{a}$ and velocity $\mathrm{v}=0$. Find the time taken to go from the position $x=\frac{\mathrm{a}}{2}$ to $x=\mathrm{a}$. Also prove that this time is $\frac{1}{6}$ of the period.
19. Verify Gauss divergence theorem for $F=x^{2} \vec{i}+y^{2} \vec{j}+z^{2} \vec{k}$ taken over the cube bounded by the planes $x=0, x=1, \mathrm{y}=0$, $\mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$. where c is the closed curve of the region bounded by $\mathrm{y}=x^{2}$ and $\mathrm{y}=x$.
