SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act,1956)

Course & Branch: B. E/B. Tech - Common to ALL	Branches
Title of the paper: Engineering Mathematics - II	
Semester: II	Max. Marks: 80
Sub.Code: ET 202A (2002/2003/2004/2005)	Time: 3 Hours
Date: 04-12-2006	Session: AN

PART - A

(10 x 2 = 20)

Answer ALL the Questions

- 1. Find the condition that the roots of the equation $x^{3} + px^{2} + qx + r = 0$ may be in Arithmetic progression.
- 2. Diminish by 3 the roots of $x^4 + 3x^3 2x^2 4x 3 = 0$.
- 3. Find the radius of curvature at x = c on $xy = c^2$.
- 4. Define an evolute.
- 5. Find the Particular Integral of $(D^2 + 4)y = \sin 2x$.
- 6. Solve $(D^2 6D + 9)y = 6e^{3x}$.
- 7. Define simple Harmonic motion.
- 8. The whirling speed of a shaft of length 'l' is given by

$$\frac{d^4y}{dx^4} = \frac{p\omega^2}{gEI} \quad \text{y. If } \alpha^4 = \frac{p\omega^2}{gEI} \quad \text{, find y.}$$

9. Find the directional derivate of $\phi = 4xz^2 + x^2yz$ at (1, -2, 1) in

the direction of
$$2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}$$
.

10. Find
$$\lambda$$
 if $(2x + y) \overrightarrow{i} + (z - \lambda y) \overrightarrow{j} + (2\lambda z - x) \overrightarrow{k}$ is solenoidal

PART – B (5 x 12 = 60)
Answer ALL the Questions
11. Solve
$$x^5 + 4x^4 + x^3 + x^2 + 4x + 1 = 0$$
.
(or)
12. Solve $4x^4 - 20x^3 + 33x^2 - 2x + 4 = 0$.
25

13. Find the radius of curvature at θ on $x = 3a \cos\theta - a\cos 3\theta$, y = $3a\sin\theta - a\sin 3\theta$.

(or)

14. Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 15. Solve $\frac{dx}{dt} + 2y = \sin 2t$, $\frac{dy}{dt} - 2x = \cos 2t$. (or) 16. Solve $y'' + 4y = \tan 2x$ by the method of variation of parameters. 17. In an L – C – R circuit, the charge q on a plate of a condenser is given by L $\frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} = \text{Esinpt}$. The circuit is tuned to resonance so that $p^2 = \frac{1}{LC}$. If at t = 0, i = 0 and

q = 0, show that for small values of
$$\frac{R}{L}$$
, i = $\frac{Et}{2L}$ sinpt.
(or) $\frac{R}{L}$

18. A particle is executing a simple Harmonic motion $\frac{d^2 x}{dt^2} = -\mu^2 x$. At t = 0, x = a and velocity v = 0. Find the time taken to go from

the position $x = \frac{a}{2}$ to x = a. Also prove that this time is $\frac{1}{6}$ of the period.

- 19. Verify Gauss divergence theorem for $F = x^2 \overrightarrow{i} + y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$ taken over the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
- (or) 20. Evaluate by Green's theorem in the plane $\int_{c}^{c} (xy + y^2) dx + x^2 dy$ where c is the closed curve of the region bounded by $y = x^2$ and y = x.