SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch :B.E/B.Tech - Common to ALL Branches (Excepts
to Bio Groups)Title of the Paper :Engineering Mathematics – IIMax. Marks :80Sub. Code :4ET202A-5ET202ATime : 3 HoursDate :03/12/2009Session :AN

PART - A $(10 \times 2 = 20)$ Answer ALL the Questions

- 1. If α, β, γ are the roots of $x^3 14x + 8 = 0$, find $\sum \alpha^2$ and $\sum \alpha^3$.
- 2. Find the condition that the roots of the equation $x^3+px^2+qx+r=0$ may be in Arithmetical progression.
- 3. What is the radius of curvature at (3,4) on $x^2+y^2 = 25$?
- 4. Find the envelope of the family of lines $y=mx+\sqrt{1+m^2}$, *m*-parameter.
- 5. Find the particular integral of $(D^2 6D + 9)y = e^{3x}$.
- 6. Transform the equation $x^2y'' xy' + y = 0$ into a linear equation with constant coefficients.
- 7. Define Simple harmonic motion.
- 8. What are the boundary conditions at the end of a beam that is perfectly free?
- 9. Find grad \mathcal{O} if $\mathcal{O} = xyz$ at (1,1,1).

10. Show that $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ is a conservative vector field.

PART – B $(5 \times 12 = 60)$ Answer All the Questions

- 11. Solve $x^5 5x^4 + 9x^3 9x^2 + 5x 1 = 0$.
- 12. Diminish by '3' the roots of $x^4 + 3x^3 2x^2 4x 3 = 0$.
- 13. Find the centre and circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a} at \left(\frac{a}{4}, \frac{a}{4}\right)$.

(or)

- 14. A rectangular box open at the top, is to have a volume of 32cc. Find the dimensions of the box that requires the least material for its construction.
- 15. Solve $\frac{d^2y}{dx^2} + 4y = 4\tan 2x$, using method of variation of parameters.

16. Solve
$$\frac{dx}{dt} + y = e^t, x - \frac{dy}{dt} = t$$
.

17. If an electric circuit in a condenser of capacity C has a resistance R and inductance L and if there is a constant electromotive force E, the charge q on the condenser at time t is given by $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{I}{C}q = E$. Find the condition that the charge 'q' should be oscillatory and in this case show that $q = e^{\frac{-Rt}{2L}} \left[c_1 \cos\left(\frac{kt}{L}\right) + c_2 \sin\left(\frac{kt}{L}\right) \right] + CE.$ (or)

- 18. A light horizontal strut AB is freely pinned at A and B. It is under the action of equal and opposite compressive forces P at its ends and it carries a load 'w' at its center. Then for $0 < x < \frac{L}{2}$, $EI\frac{d^2y}{dx^2} + Py = -\frac{1w}{2}x$. Also y = 0 at x = 0 and $\frac{dy}{dx} = 0$ at $x = \frac{l}{2}$. Prove that $y = \frac{w}{2p} \left(\frac{\sin nx}{n\cos \frac{nl}{2} - x}\right)$, $n^2 = \frac{P}{EI}$.
- 19. Verify Stokes theorem for $\vec{F} = xy\vec{i} 2yz\vec{j} zx\vec{k}$ where S is the open surface of the rectangular parallelepiped formed by the planes x = 0, x=1, y=0, y=2 and z = 3 above the *XOY* plane. (or)
- 20. Find the values of the constants a,b,c so that $\vec{F} = (axy+bz^3)\vec{i} + (3x^2-cz)\vec{j} + (3xz^2-y)\vec{k}$ may be irrotational. For these values of a,b,c find also the scalar potential of \vec{F} .