
SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech-All Branches Except Biogroupts Title of the Paper: Engineering Mathematics - II Max. Marks: 80 Sub. Code: 4ET202A /5ET202A (2004/05)
Date: 04/12/2010

Time: 3 Hours
Session: AN

$$
\text { PART }-\mathrm{A} \quad(10 \times 2=20)
$$

Answer ALL the Questions

1. Find the condition that the roots of the equation. $X^{3}+p x^{2}+q x+r=0$ may be in geometrical progression.
2. If α, β and γ are the roots of $x^{3}-3 \mathrm{ax}+\mathrm{b}=0$, show that $\Sigma(\alpha-\beta)$ $(\alpha-\gamma)=9 \mathrm{a}$.
3. Find the radius of curvature of the curve $x y=c^{2}$ at (c, c).
4. Find the stationary points of the function $f(x, y)=4 x^{2}+6 x y+9 y^{2}-8 x-24 y+4$.
5. Find the particular integral of $\left(D^{2}-2 D+5\right) y=e^{x} \sin 2 x$.
6. Convert the equation $x^{4} y^{\prime \prime \prime}-x^{3} y^{\prime \prime}+x^{2} y^{\prime}=1$ as a linear equation with constant coefficients.
7. Rewrite the equation $\mathrm{p}=\log (\mathrm{px}-\mathrm{y})$ as a Clairaut's equation and give its general solution.
8. Write down the differential equation satisfied by the current and charge in a capacitative circuit.
9. If \bar{r} is the position vector of the point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), \bar{a} is a constant vector and $\phi=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$, then find (a) $\operatorname{grad}\left(\bar{r} \mathbf{O}_{\bar{a}}^{-}\right)$and (b) \bar{r}° grad ϕ.
10. If \bar{F} is a solenoid vector, find the value of $\operatorname{curl}(\operatorname{curl}(\operatorname{curl}(\operatorname{curl} \bar{F})))$

$$
\text { PART - B } \quad(5 \times 12=60)
$$

Answer All the Questions
11. (a) Solve $6 x^{3}-11 x^{2}+6 x-1=0$ given the roots are in harmonic progression.
(b) Transform the equation $x^{4}-8 x^{3}-x^{2}+68 x+60=0$ into one which does not contain the term x^{3}. Hence, solve it.
(or)
12. (a) If α, β and γ are the roots of $x^{3}-14 x+8=0$, find the value of $\Sigma \alpha^{2}$ and $\Sigma \alpha^{3}$.
(b) Solve $8 x^{5}-22 x^{4}-55 x^{3}+55 x^{2}+22 x-8=0$.
13. (a) Find the equation of the circle of curvature of the parabola y^{2} $=12 \mathrm{x}$ at the point $(3,6)$.
(b) Find the evolute of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
(or)
14. (a) Find the envelope of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are connected by the relation $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$, c is a constant. (b) Find the maximum value of $x^{m} y^{n} z^{p}$, when $x+y+z=a$.
15. (a) Solve $y=x+p^{2}-2 p$, as an equation solvable for y.
(b) Solve $\left(D^{2}+D+1\right) y=e^{-x} \sin ^{2}(x / 2)$.
(or)
16. (a) Solve $\left(x^{2} D^{2}-x D+4\right) y=x^{2} \sin (\log x)$
(b) Solve the differential equation $\frac{d^{2 y}}{d x^{2}}+a^{2} y=\tan a x$ by the method of variation of parameters.
17. (a) A particle falls under gravity from rest through a medium whose resistance varies as the velocity and whose terminal velocity is L. When the particle acquired a velocity $L / 2$, show that it would have traversed a distance of $\frac{L^{2}}{2 g} \log \left(\frac{4}{e}\right)$
(b) An electromotive force $\mathrm{E} \sin (\mathrm{wt})$ is applied to a circuit containing a resistance R and inductance L in series. If $I=0$ at $t=$ 0 , show that the current L in the circuit at time t is given by $i=\frac{E}{\sqrt{R^{2}+L^{2} w}}[\sin (w t-\Phi)+\sin \Phi \exp (-R t / L)]$,

Where $\Phi=\tan ^{-1}\left(\frac{L w}{R}\right)$.
(or)
18. A particle is projected with velocity U along a smooth horizontal plane in a medium whose resistance per unit of mass is μ times the cube of the velocity. Show that the distance it has described in time t is $\frac{1}{\mu U}\left(\sqrt{1+2 \mu U^{2} t-1}\right)$ and that its velocity then $\frac{U}{\sqrt{1+2 \mu U^{2} t}}$
19. (a) Prove the relation: $\operatorname{curl}(\operatorname{curl} \bar{F})=\nabla(\nabla \circ \bar{F})-\nabla^{2} \bar{F}$.
(b) Verify Gauss divergence theorem for $\bar{F}=\mathrm{x}^{2} \bar{i}+\mathrm{y}^{2} \bar{j}+\mathrm{z}^{2} \bar{k}$, where S is the surface of the cuboid formed by the planes $x=0$, $\mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}, \mathrm{z}=0$ and $\mathrm{z}=\mathrm{c}$.
(or)
20. (a) Verify Stoke's theorem for $\bar{F}=-\mathrm{y} \bar{i}+2 \mathrm{yz}_{\bar{j}}+\mathrm{y}^{2} \overline{\mathrm{k}}$, where S is the upper half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and C is the circular boundary on the xoy plane.
(b) Evaluate $\iint_{s} \bar{F} \circ \bar{d} s$, where $\bar{F}=y z \bar{i}+z x \bar{j}+x y \hat{k}$ and S is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ that lies in the first octant.

