Register Number

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech-All Branches Except BiogrouptsTitle of the Paper: Engineering Mathematics - IIMax. Marks: 80Sub. Code: 4ET202A /5ET202A (2004/05)Time: 3 HoursDate: 04/12/2010Session: AN

PART - A $(10 \times 2 = 20)$ Answer ALL the Questions

- 1. Find the condition that the roots of the equation. $X^{3} + px^{2} + qx + r = 0$ may be in geometrical progression.
- 2. If α , β and γ are the roots of $x^3 3ax + b = 0$, show that $\Sigma (\alpha \beta)$ $(\alpha - \gamma) = 9a$.
- 3. Find the radius of curvature of the curve $xy = c^2$ at (c, c).
- 4. Find the stationary points of the function $f(x, y) = 4x^2 + 6xy + 9y^2 8x 24y + 4$.
- 5. Find the particular integral of $(D^2 2D + 5)y = e^x \sin 2x$.
- 6. Convert the equation $x^4 y''' x^3 y'' + x^2 y' = 1$ as a linear equation with constant coefficients.
- 7. Rewrite the equation $p = \log (px y)$ as a Clairaut's equation and give its general solution.
- 8. Write down the differential equation satisfied by the current and charge in a capacitative circuit.

- 9. If \bar{r} is the position vector of the point (x, y, z), \bar{a} is a constant vector and $\phi = x^2 + y^2 + z^2$, then find (a) grad ($\bar{r}o\bar{a}$) and (b) \bar{r}° grad ϕ .
- 10. If \overline{F} is a solenoid vector, find the value of curl (curl(curl(curl \overline{F})))

PART – B $(5 \times 12 = 60)$ Answer All the Questions

11. (a) Solve $6x^3 - 11x^2 + 6x - 1 = 0$ given the roots are in harmonic progression.

(b) Transform the equation $x^4 - 8x^3 - x^2 + 68x + 60 = 0$ into one which does not contain the term x^3 . Hence, solve it.

12. (a) If α , β and γ are the roots of $x^3 - 14x + 8 = 0$, find the value of $\Sigma \alpha^2$ and $\Sigma \alpha^3$. (b) Solve $8x^5 - 22x^4 - 55x^3 + 55x^2 + 22x - 8 = 0$.

(or)

- 13. (a) Find the equation of the circle of curvature of the parabola $y^2 = 12x$ at the point (3, 6).
 - (b) Find the evolute of the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
 - (or)
- 14. (a) Find the envelope of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b are connected by the relation $a^2 + b^2 = c^2$, c is a constant. (b) Find the maximum value of $x^m y^n z^p$, when x + y + z = a.
- 15. (a) Solve $y = x + p^2 2p$, as an equation solvable for y. (b) Solve $(D^2 + D + 1) y = e^{-x} \sin^2(x/2)$.
- (or) 16. (a) Solve $(x^2D^2 - x D + 4) y = x^2 \sin(\log x)$

(b) Solve the differential equation $\frac{d^{2y}}{dx^2} + a^2 y = \tan ax$ by the method of variation of parameters.

17. (a) A particle falls under gravity from rest through a medium whose resistance varies as the velocity and whose terminal velocity is L. When the particle acquired a velocity L/2, show that it would have traversed a distance of $\frac{L^2}{2g}\log(\frac{4}{e})$

(b) An electromotive force $E \sin(wt)$ is applied to a circuit containing a resistance R and inductance L in series. If I = 0 at t = 0, show that the current L in the circuit at time t is given by

$$i = \frac{E}{\sqrt{R^2 + L^2 w}} [\sin(wt - \Phi) + \sin \Phi \exp(-Rt/L)],$$

Where
$$\Phi = \tan^{-1}\left(\frac{Lw}{R}\right)$$

(or)

18. A particle is projected with velocity U along a smooth horizontal plane in a medium whose resistance per unit of mass is μ times the cube of the velocity. Show that the distance it has described

in time t is $\frac{1}{\mu U}(\sqrt{1+2\mu U^2 t-1})$ and that its velocity then $\frac{U}{\sqrt{1+2\mu U^2 t}}$

19. (a) Prove the relation: curl(curl F) = ∇(∇∘ F) - ∇²F.
(b) Verify Gauss divergence theorem for F = x²i + y²j + z²k, where S is the surface of the cuboid formed by the planes x=0, x=a, y=0, y=b, z=0 and z=c.

(or)

20. (a) Verify Stoke's theorem for $\overline{F} = -y \overline{i} + 2yz\overline{j} + y^2\overline{k}$, where S is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ and C is the circular boundary on the xoy plane.

(b) Evaluate $\iint_{s} \overline{F} \circ \overline{ds}$, where $\overline{F} = yz\overline{i} + zx\overline{j} + xy\hat{k}$ and S is the part of the sphere $x^{2} + y^{2} + z^{2} = 1$ that lies in the first octant.