SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - Common to ALL Branches (Except to Bio Groups)
Title of the paper: Engineering Mathematics - II
Semester: II
Sub.Code: 6C0016
Date: 10-12-2007

Max. Marks: 80
Time: 3 Hours Session: AN
PART - A
$(10 \times 2=20)$

Answer All the Questions

1. Define De Moivre's theorem.
2. Find all the cube roots of unity.
3. Find the direction ratio's of the normal to the plane $a x+b y+c z+d=0$.
4. Find the equation of the plane through $(1,2,3)$ and $(-1,1,1)$ parallel to they y axis.
5. Write the relation between Beta and gamma function.
6. Evaluate $\int_{0}^{\frac{\pi}{2}} \operatorname{Sin}^{7} \theta \operatorname{Cos}{ }^{5} \theta d \theta$.
7. Define irrotational and solenoidal Vectors.
8. Define Gauss divergence theorem and Green's theorem.
9. Evaluate $\int_{1}^{3} \int_{1}^{2}\left(x^{2}+y^{2}\right) d x d y$.
10. Change the order of integration of $\int_{0}^{a} \int_{0}^{x} f(x, y) d y d x$.

$$
\begin{aligned}
& \text { PART - B } \quad(5 \times 12=60) \\
& \text { Answer All the Questions }
\end{aligned}
$$

11. (a) Express $\operatorname{Sin}^{8} \theta$ interms of cosine multiples of θ.
(b) If $\tanh \frac{y}{2}=\tan \frac{x}{2}$, show that
(i) $\operatorname{Cos} x \operatorname{Cosh} y=1$
(ii) $\tan x=\sin h y$.
(or)
12. (a) Express $\operatorname{Cos} 7 \theta$ in power of θ.
(b) Show that $\left(\frac{1+\operatorname{Sin} \theta+i \operatorname{Cos} \theta}{1+\operatorname{Sin} \theta-\operatorname{Cos} \theta}\right)^{n}=\operatorname{Cos}\left(\frac{n \pi}{2}-n \theta\right)+i \operatorname{Sin}\left(\frac{n \pi}{2}-n \theta\right)$
13. (a) Find the equation to the plane that contains the two parallel line $\frac{x-3}{1}=\frac{y-2}{-1}=\frac{z-1}{2}$ and $\frac{x-1}{1}=\frac{y+2}{-1}=\frac{z+1}{2}$
(b) Show that $\frac{x-4}{2}=\frac{y-5}{3}=\frac{z-6}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are Coplanar:

Find also the equation of the plane containing them
(or)
14. Find the length and equation of the shortest line between the lines $\frac{x+1}{3}=\frac{y-2}{2}=\frac{z}{4}$ and $3 \mathrm{x}+2 \mathrm{y}-5 \mathrm{z}=6$ and $2 \mathrm{x}-3 \mathrm{y}+\mathrm{z}-3=0$.
15. (a) Prove that $\int_{0}^{\infty} \frac{x^{5}}{5^{x}} d x=\frac{120}{(\log 5)^{6}}$.
(b) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\operatorname{Cot} \theta} d \theta=\frac{1}{2} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)$
16. Express $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}$ interms of Gamma function.
(b) Prove that $\sqrt{\frac{1}{2}}=\sqrt{\pi}$
17. (a) Prove that $\nabla \times \nabla \times \nabla \times \nabla \times \overline{\mathrm{F}}=\nabla^{4} \overline{\mathrm{~F}}$.
(b) Show that the value of the integral $\int_{(0,0)}^{(1,2)} 3 x(x+2 y) d x+\left(3 x^{2}-y^{3}\right) d y$ is independent of the path of integration
(or)
18. Verify Gauss's divergence theorem for $\overline{\mathrm{F}}=4 \mathrm{x} z \mathrm{zi}-\mathrm{y}^{2} \mathrm{j}+\mathrm{yzk}$ over the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
19. (a) Evaluate $\int_{A} x y(x+y) d x d y$, over the region A bounded by $y=x^{2}$ and $y=x$.
(b) Change the order of integration and evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$.
(or)
20. Evaluate $\int_{1}^{e} \int_{1}^{\log } \int_{1}^{Y} \log z d z d x d y$.

