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PART – A      (10 x 2 = 20) 

Answer All the Questions 

1. Define De Moivre’s theorem. 
   

2. Find all the cube roots of unity. 
 

3. Find the direction ratio’s of the normal to the plane  

ax + by + cz + d = 0. 
  

4. Find the equation of the plane through (1, 2, 3) and (-1, 1, 1) parallel to they y-

axis. 
 

5. Write the relation between Beta and gamma function.  

6. Evaluate .5
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7. Define irrotational and solenoidal Vectors. 
 

8. Define Gauss divergence theorem and Green’s theorem. 

9. Evaluate ∫ ∫ +
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10. Change the order of integration of ∫ ∫
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PART – B      (5 x 12 = 60) 

Answer All the Questions 

11. (a) Express Sin
8θ interms of cosine multiples of θ. 

 (b) If tanh ,
2

tan
2

xy
= show that  

(i) Cos x Cosh y = 1   (ii) tan x = sin h y. 

(or) 

12. (a) Express Cos 7θ in power of θ.  

(b) Show that 
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13. (a) Find the equation to the plane that contains the two parallel line  
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(b) Show that 
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are Coplanar: 

Find also the equation of the plane containing them  

(or) 

14. Find the length and equation of the shortest line between the lines 
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15. (a) Prove that ( )
.
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(b) Prove that 
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  (or) 

16. Express  ∫
−
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interms of Gamma function.  

(b) Prove that π=
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17. (a) Prove that ∇ x ∇ x ∇ x ∇ x F = ∇4F. 

(b) Show that the value of the integral ∫ −++
)2,1(

)0,0(

32 )3()2(3 dyyxdxyxx  is 

independent of the path of integration  

(or) 

18. Verify Gauss’s divergence theorem for F = 4x zi – y
2
j + yzk over the cube 

bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. 
 

19. (a) Evaluate ∫ +
A

dxdyyxxy ,)( over the region A bounded by y = x
2
 and y = x. 

 (b) Change the order of integration and evaluate ∫ ∫
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20. Evaluate ∫ ∫ ∫
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