SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech – Common to ALL Branches (Except to Bio Groups)	
Title of the paper: Engineering Mathematics - II	
Semester: II	Max. Marks: 80
Sub.Code: 6C0016	Time: 3 Hours
Date: 10-12-2007	Session: AN

PART – A

(10 x 2 = 20)

Answer All the Questions

- 1. Define De Moivre's theorem.
- 2. Find all the cube roots of unity.
- 3. Find the direction ratio's of the normal to the plane ax + by + cz + d = 0.
- 4. Find the equation of the plane through (1, 2, 3) and (-1, 1, 1) parallel to they y-axis.
- 5. Write the relation between Beta and gamma function.

6. Evaluate
$$\int_{0}^{\frac{\pi}{2}} Sin^{-7} \theta Cos^{-5} \theta d \theta$$

- 7. Define irrotational and solenoidal Vectors.
- 8. Define Gauss divergence theorem and Green's theorem.
- 9. Evaluate $\int_{1}^{3} \int_{1}^{2} (x^{2} + y^{2}) dx dy$.
- 10. Change the order of integration of $\int_{0}^{a} \int_{0}^{x} f(x, y) dy dx$.

PART – B $(5 \times 12 = 60)$ Answer All the Questions

- 11. (a) Express $\sin^8 \theta$ in terms of cosine multiples of θ .
 - (b) If $\tanh \frac{y}{2} = \tan \frac{x}{2}$, show that (i) Cos x Cosh y = 1 (ii) $\tan x = \sinh y$. (or)

12. (a) Express Cos 7θ in power of θ .

(b) Show that
$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right)$$

(a) Find the equation to the plane that contains the two parallel line 13. $\frac{x-3}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $\frac{x-1}{1} = \frac{y+2}{-1} = \frac{z+1}{2}$ (b) Show that $\frac{x-4}{2} = \frac{y-5}{3} = \frac{z-6}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are Coplanar: Find also the equation of the plane containing them Find the length and equation of the shortest line between the lines 14. $\frac{x+1}{3} = \frac{y-2}{2} = \frac{z}{4}$ and 3x + 2y - 5z = 6 and 2x - 3y + z - 3 = 0. 15. (a) Prove that $\int_{0}^{\infty} \frac{x^5}{5^x} dx = \frac{120}{(\log 5)^6}$. (b) Prove that $\int_{-\infty}^{\frac{\pi}{2}} \sqrt{\cot \theta} d\theta = \frac{1}{2} \int_{-\infty}^{-\infty} \left(\frac{1}{4}\right) \int_{-\infty}^{\infty} \left(\frac{3}{4}\right)$ (or)16. Express $\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}}$ interms of Gamma function. (b) Prove that $\frac{1}{2} = \sqrt{\pi}$ (a) Prove that $\nabla x \nabla x \nabla x \nabla x \overline{F} = \nabla^4 \overline{F}$. 17. (b) Show that the value of the integral $\int_{0}^{(1,2)} 3x(x+2y)dx + (3x^2 - y^3)dy$ is independent of the path of integration (or)Verify Gauss's divergence theorem for $\overline{F} = 4x zi - y^2j + yzk$ over the cube 18. bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (a) Evaluate $\int_{A} xy(x+y)dxdy$, over the region A bounded by $y = x^2$ and y = x. 19. (b) Change the order of integration and evaluate $\int_{0}^{1} \int_{2}^{2-x} xy dx dy.$ (or)Evaluate $\int_{a}^{e} \int_{a}^{\log Y} \int_{a}^{e^{x}} \log z dz dx dy$

20.