## SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E /B.Tech - Common to ALL Branches (Except to Bio Groups)
Title of the paper: Engineering Mathematics - II
Semester: II
Sub.Code: 6C0016
Date: 24-05-2008

Max. Marks: 80 Time: 3 Hours Session: FN
PART - A
$(10 \times 2=20)$
Answer All the Questions

1. Give the expansion of $\tan \theta$ upto $5^{\text {th }}$ degree.
2. Separate the real and imaginary part of $\cosh (x+i y)$.
3. Find the equation to the plane through the point $(1,2,3)$ and parallel to $3 x+4 y+z+5=0$.
4. Find the equation to the sphere with centre $(1,2,1)$ and touching the plane $\mathrm{z}=0$.
5. Give two integers such that their Gamma values are equal.
6. Write $\int_{0}^{\pi / 2} \cos ^{2 m} \theta \sin ^{2 n} \theta d \theta$ in terms of Beta integral.
7. Find the directional derivative of $x^{2}+2 x y$ at $(1,-1,3)$ in the direction of x axis.
8. $\int \vec{F} \cdot \bar{d} r$ is independent of the path when?
9. Shade the region of integration $\int_{0}^{2} \int_{0}^{y} d x d y$.
10. Evaluate $\int_{0}^{\pi / 2} \sin ^{5} \theta \cos ^{6} \theta d \theta$.

Answer All the Questions
11. (a) Prove that
$\cos ^{4} \theta \sin ^{3} \theta=\frac{1}{2^{6}}(3 \sin \theta+3 \sin 3 \theta-\sin 5 \theta-\sin 7 \theta)$.
(b) If $\tanh \frac{u}{2}=\tan \frac{\theta}{2}$ prove tha $\cosh u=\sec \theta$.
(or)
12. (a) If $\frac{\sin \theta}{\theta}=\frac{5045}{5046}$ prove that $\theta$ is $1^{\circ} 58^{\prime}$ nearly.
(b) If $\sin (\theta+i \phi)=\cos \alpha+i \sin \alpha$ prove that $\cos 2 \theta= \pm \sin \alpha$.
13. (a) Find the equation of one plane passing through the line of intersection of $2 x+3 y-4 z=8$ and $4 x-y+z=7$ and which is perpendicular to the $\mathrm{yx}-$ plane.
(b) Show that the plane $2 x-2 y+z=9$ touches the sphere touches the sphere $x^{2}+y^{2}+z^{2}+2 x+2 y-7=0$ and find the point of contact.

> (or)
14. (a) Find the shortest distance and its equation between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} ; \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$.
(b) Find the equation of the sphere that passes through the circle $x^{2}+y^{2}+z^{2}+x-3 y+2 z=1,2 x+5 y-z+7=0$ and cuts orthogonally the sphere $x^{2}+y^{2}+z^{2}-3 x+5 y-7 z-6=0$.
15. (a) Prove that $\beta(m, n)=\frac{\sqrt{m} \sqrt{n}}{\sqrt{m+n}}$
(b) Evaluate $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of Gamma function.
16. (a) Evaluate $\int x^{m}\left(\log \frac{1}{x}\right)^{n} d x$
(b) Evaluate $\iint_{A} x^{p} y^{q} d x d y$ where A is the area enclosed by $\mathrm{x}=0$, $\mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.
17. (a) Find the tangent plane to the surface $x z^{2}+x^{2} y-z+1=0$ at (1, $-3,2$ ).
(b) Find $\iint_{S} F \cdot \bar{d} \bar{S}$ where $\bar{F}=(2 x+3 z) \vec{i}-(x z+y) \vec{j}+\left(y^{2}+2 z\right) \vec{k}$
where $S$ is the surface of the sphere having centre at $(3,-1,2)$ and radius $=3$.
(or)
18. (a) Prove that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$.
(b) Find $\int_{c} \vec{F} \cdot \bar{d} r, \bar{F}=4 x \vec{i}-2 y^{2} \vec{j}+z^{2} \vec{k}$ where S is the upperhalf of the surface of the sphere $x^{2}+y^{2}+z^{2}=1, \mathrm{C}$ is its boundary.
19. (a) Evaluate $\int_{0}^{\pi} \frac{x \sin x d x}{1+\cos ^{2} x} d x$.
(b) Change the order of integration and evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.
(or)
20. (a) If $I_{n}=\int_{0}^{a} x^{n} e^{-x} d x$ prove that $I_{n}-(n+a) I_{n-1}+a(n-1) I_{n-2}=0$.
(b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$.

