SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech – Common to ALL Branches	
(Excepts to Bio Groups)	
Title of the paper: Engineering Mathematics - II	
Semester: II	Max. Marks: 80
Sub.Code: 6C0016 (2006/2007)	Time: 3 Hours
Date: 04-12-2008	Session: AN

PART – A Answer All the Questions (10 x 2 = 20)

1. If $2\cos\theta = x + \frac{1}{x}$, Prove that $2\cos r \theta = x^r + \frac{1}{x^r}$.

- 2. Separate the real of imaginary part of Sinh(x+iy)
- 3. Prove that the points A (3,2,4), B (4,5,2), C(5,8,0) are collinear.
- 4. Prove that the planes 5x 3y + 4z = 1, 8y + 3y + 5z = 4 and 18x 3y + 13z = 6 contain a common line.
- 5. What is the reduction formula for $\lceil (n) \rceil$?
- 6. Define Beta function.
- 7. Prove that div grad $f = \nabla^2 f$.
- 8. State Stoke's theorem.
- 9. Evaluate $\int_{0}^{\pi/2} \sin^{6}x \, dx$.
- 10. Find the area of a circle $x^2 + y^2 = 1$, which lies in the positive quadrant.

PART – B Answer All the Questions

$$(5 \times 12 = 60)$$

11. (a) If
$$\tan (\theta + i\phi) = e^{i\infty}$$
, then show that
(i) $\theta = (n + \frac{1}{2}) \frac{\pi}{2}$
(ii) $\phi = \frac{1}{2} \log \tan (\pi/4 + \infty/2)$.

(b) Given $\frac{1}{\int} = \frac{1}{LPi} + CPi + \frac{1}{R}$, where L,P,R are real, express \int in the form A e^{iθ} giving the values of A and θ .

(or)

12. (a) Expand $\sin^2\theta \cos^3\theta$ in a series of sines of multiples of θ .

- (b) If $\cos^{-1}(x+iy) = \infty + i\beta$, then Prove that $x^2 \operatorname{sech}^2\beta + y^2 \operatorname{cosech}^2\beta = 1$.
- 13. (a) Find the equation of the square through the points (0,0,0), (0,1,-1), (-1,2,0) and (1,2,3). Locate its centre of find the radius.
 - (b) Find the equation in the symmetrical of the projection of the line $\frac{x-1}{2} = -(y+1) = \frac{z-3}{4}$ on the plane x + 2y + z = 12.

(or)

14. (a) Find the angle between the line $\frac{x-x^1}{l} = \frac{y-y^1}{m} = \frac{z-z^1}{n}$ of the plane ax + by + cz + d = 0.

(b) Show that the shortest distance between z-axis of the line

$$ax + by + cz + d = 0 = a^{1}x + b^{1}y + c^{1}z + d^{1}$$
 is
 $\frac{dc^{1} - d^{1}c}{\sqrt{(ac^{1} - a^{1}c)^{2} + (bc^{1} - b^{1}c)^{2}}}$

15. (a) Prove that
$$\beta(m,n) = \frac{\Gamma(m).\Gamma(n)}{\Gamma(m+n)}$$
.

(b) Evaluate $\int_{0}^{\pi/2} \cos^{m} x \sin^{n} x \, dx$, where *m* of *n* is even integers.

16. (a) Prove that
$$\lceil (n + \frac{1}{2}) = \frac{\Gamma(2n+1).(\Pi)}{2^{2n-1}.\Gamma(n+1)}$$

(b) Prove that
$$\beta(n,n) = \frac{\sqrt{\Pi \Gamma(n)}}{2^{2n-1} \Gamma(n + \frac{1}{2})}$$
.

- 17. (a) Find the workdone in moving a particle in the force field $F = 3x^2i + (2xz-y)j + zk$ along (i) the straight line from (0,0,0) to (2,1,3). (ii) the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x=0 to x = 2.
 - (b) Prove that $\nabla r^n = nr^{n-2}\vec{r}$, where $\vec{r} = xi + yj + zk$.

- 18. (a) Prove that $\nabla \mathbf{x} (\nabla \mathbf{x} \mathbf{V}) = \nabla (\nabla \mathbf{V}) \nabla^2 \mathbf{V}$.
 - (b) Verify Gauss divergence theorem, for $f = 4xzi y^2j + yzk$ taken over the cube bounded by x = y = z = 0 of x = y = z = 1.
- 19. (a) Calculate $\iint r^3 dr d\theta$, over the area included between the circles $r = 2 \sin\theta$ and $r = 4 \sin\theta$.

(b) Show that the area between the Parabolas y = 4 ax and $x^2 = 4 ay$ is $\frac{16}{3}a^2$.

- 20. (a) Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - (b) Show that $u_n (n+a)u_{n-1} + a(n-1)u_{n-2} = 0$, if $un = \int_{a}^{a} x^n e^{-x} dx.$