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PART - A   (10 X 2 = 20) 

Answer ALL the Questions 

 

1. Expand Cos4θ in a series of Powers of Cos θ. 

 

2. Prove that Cosh (A + B) = Cosh A Cosh B + Sinh A Sinh B. 

 

3. Using direction cosines, prove that the points A (3, 1, 3),  

B(1, -2, 1) and C(-1, -5, -5) are Collinear.  

 

4. Find the intercepts made by the plane ax + by + cz + d = 0 on the co-

ordinate axes. 

 

5. Define Gamma and Beta function. 

 

6. Prove that 
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7. Find grad ϕ at the point (1, -2, -1) when ϕ = 3x
2
y – y

3
z

2
. 

 

8. Show that F = (y
2
 – z

2
 + 3yz – 2x) i  + (3xy + 2xy) J +  

(3xy – 2xz + 2z) K is solenoidal. 

 

9. Prove that ∫ ∫ −=
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10. Write down the reduction formula for .xdxSin n

∫  

 

PART – B     (5 x 12 = 60) 

Answer All the Questions 

 

11. (a) Prove that .64112567
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 (b) If ,
19494
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=

θ
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Prove that θ is equal to 1° nearly. 

(or) 

12. (a) If Sin (θ + ϕ) Cos α + isin α, prove that Cos
2θ = ± sin α. 

 

 (b) If tan h ( )
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13. (a) Find the equation of the plane which passes through the points (6, 2, -

4) and (3, -4, 1) and is parallel to the line joining the points (1, 0, 3) and (-

1, 2, 4). 

 

 (b) Prove that the lines 
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and find the equation the plane in which they lie.  

(or) 

14. (a) Find the length and equations of the shortest distance between the 

lines .
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(b) Find the equation of the sphere passing through the circle given by x
2
 

+ y
2
 + z

2
 + 3x + y + 4z – 3 = 0 and x

2
 + y

2
 + z

2
 + 2x + 3y + 6 = 0 and the 

point (1, -2, 3). 

 



15. (a) Evaluate ( ) dxxx
pnm −∫ 1
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  in terms of Gamma functions and 

hence find ∫ −
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(b) Show the volume of the region of space bounded by the co-ordinate 

planes and the surface .
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16. (a) Prove that 
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(b) Evaluate ∫ ∫ ∫
−−−

,
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dzdydx
taken over the region of space in the 

positive octant bounded by the sphere x
2
 + y

2
 + z

2
 = 1.  

 

17. Verify Stoke’s theorem for KyxJxzizyF
222 ++= where S 

is the open surface of the cube formed by the planes x = ± a, y = ± a, and 

z = ± a in which the  plane z = -a is cut.  

(or) 

18. Verify Gauss divergence theorem for 

KzJyIxF
222 ++= where S is the surface of the cubold 

formed by the planes x = 0, x = a, y = 0, y = b, z = 0 and z = c. 

 

19. (a) Prove that ( ) .2log
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20. (a) Evaluate ( )∫ ∫
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by changing the order 

of Integration. 

 

 (b) Evaluate ∫ ∫ ∫
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