SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - (Common to ALL Branches)
Except Bio Groups
Title of the paper: Engineering Mathematics - II
Semester: II
Sub.Code: 6C0016(2006-07-08)
Date: 12-05-2009

Max.Marks: 80 Time: 3 Hours

Session: FN
$(10 \times 2=20)$

Answer ALL the Questions

1. Expand $\operatorname{Cos} 4 \theta$ in a series of Powers of $\operatorname{Cos} \theta$.
2. Prove that $\operatorname{Cosh}(A+B)=\operatorname{Cosh} A \operatorname{Cosh} B+\operatorname{Sinh} A \operatorname{Sinh} B$.
3. Using direction cosines, prove that the points $\mathrm{A}(3,1,3)$, $B(1,-2,1)$ and $C(-1,-5,-5)$ are Collinear.
4. Find the intercepts made by the plane $a x+b y+c z+d=0$ on the coordinate axes.
5. Define Gamma and Beta function.
6. Prove that $\int_{0}^{\infty} x^{4} e^{-x^{2}} d x=\frac{3}{8} \sqrt{\pi}$.
7. Find $\operatorname{grad} \varphi$ at the point $(1,-2,-1)$ when $\varphi=3 x^{2} y-y^{3} z^{2}$.
8. Show that $\overline{\mathrm{F}}=\left(\mathrm{y}^{2}-\mathrm{z}^{2}+3 \mathrm{yz}-2 \mathrm{x}\right) \overline{\mathrm{i}}+(3 x y+2 x y) \overline{\mathrm{J}}+$ $(3 x y-2 x z+2 z) \quad \bar{K}$ is solenoidal.
9. Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-y) d y$.
10. Write down the reduction formula for $\int \operatorname{Sin}^{n} x d x$.
PART - B

Answer All the Questions
11. (a) Prove that $\frac{\operatorname{Sin} 7 \theta}{\operatorname{Sin} \theta}=7-56 \operatorname{Sin}^{2} \theta+112 \operatorname{Sin}^{4} \theta-64 \operatorname{Sin}^{6} \theta$.
(b) If $\frac{\operatorname{Sin} \theta}{\theta}=\frac{19493}{19494}$, Prove that θ is equal to 1° nearly.
(or)
12. (a) If $\operatorname{Sin}(\theta+\varphi) \operatorname{Cos} \alpha+\sin \alpha$, prove that $\operatorname{Cos}^{2} \theta= \pm \sin \alpha$.
(b) If $\tan \mathrm{h} \frac{x}{2}=\tan \theta / 2$, Show that $x=\log \tan (\pi / 4+\theta / 2)$
13. (a) Find the equation of the plane which passes through the points (6,2 , $4)$ and $(3,-4,1)$ and is parallel to the line joining the points $(1,0,3)$ and ($1,2,4)$.
(b) Prove that the lines $\frac{x-4}{2}=\frac{y-5}{3}=\frac{z-6}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar and find the equation the plane in which they lie.
(or)
14. (a) Find the length and equations of the shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$.
(b) Find the equation of the sphere passing through the circle given by x^{2} $+y^{2}+z^{2}+3 x+y+4 z-3=0$ and $x^{2}+y^{2}+z^{2}+2 x+3 y+6=0$ and the point (1, -2, 3).
15. (a) Evaluate $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x \quad$ in terms of Gamma functions and hence find $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{n}}}$.
(b) Show the volume of the region of space bounded by the co-ordinate planes and the surface $\sqrt{x / a}+\sqrt{y / b}+\sqrt{z / c}=1 i s \frac{a b c}{90}$.
(or)
16. (a) Prove that $\beta(n, n)=\frac{\pi)(n)}{\left.2^{2 n-1}\right)}$
(b) Evaluate $\iiint \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$, taken over the region of space in the positive octant bounded by the sphere $x^{2}+y^{2}+z^{2}=1$.
17. Verify Stoke's theorem for $\vec{F}=y^{2} z \bar{i}+z^{2} x \bar{J}+x^{2} y \bar{K}$ where S is the open surface of the cube formed by the planes $x= \pm a, y= \pm a$, and $\mathrm{z}= \pm \mathrm{a}$ in which the plane $\mathrm{z}=-\mathrm{a}$ is cut.

> (or)
18. Verify formed by the planes $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}, \mathrm{z}=0$ and $\mathrm{z}=\mathrm{c}$.
19. (a) Prove that $\int_{0}^{\frac{\pi}{4}} \log (1+\tan \theta) d \theta=\frac{\pi}{8} \log 2$.
(b) Evaluate $\int_{0}^{\frac{\pi}{2}} \operatorname{Sin}^{9} x \operatorname{Cos}^{5} x d x$.
20. (a) Evaluate $\int_{0}^{3} \int_{1}^{\sqrt[4]{-y}}(x+y) d x d y \quad$, by changing the order of Integration.
(b) Evaluate $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} r^{4} \operatorname{Sin} \phi d r d \phi d \theta$.

