SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E / B. Tech - Common to all Branches (Except to Bio Groups)
Title of the paper: Engineering Mathematics - II
Semester: II
Sub.Code: ET202A (2002/2003/2004/2005)
Date: 30-04-2007

Max. Marks: 80
Time: 3 Hours
Session: FN

PART - A

$(10 \times 2=20)$

Answer ALL the Questions

1. If α, β, γ are the roots of $\mathrm{x}^{3}-14 \mathrm{x}+8=0$, find $\Sigma \alpha^{2}$.
2. Diminish by 3 the roots of $x^{4}+3 x^{3}-2 x^{2}-4 x-3=0$.
3. Find the curvature of the circle $x^{2}+y^{2}=49$.
4. Find the envelope of $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$ where m is a parameter.
5. Solve $\left(D^{2}+4\right) y=\sin 2 x$.
6. Solve $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
7. What is the period of this simple harmonic motion if the particle is moving on a straight line and its distance from a fixed point O on it, is x, and the velocity at time t and distance x is v. The relation connecting V an X is $4 \mathrm{v}^{2}=25-\mathrm{x}^{2}$.
8. Define deflected curve.
9. State Gauss-Divergence theorem.
10. Show that $\bar{f}=\left(6 x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \hat{j}+\left(3 x z^{2}-y\right) \hat{k}$ is
irrotational.
PART - B
$(5 \times 12=60)$

Answer ALL the Questions

11. (a) Solve $x^{6}+2 x^{5}+2 x^{4}-2 x^{2}-2 x-1=0$.
(b) Find k , if the equation $2 x^{3}-9 x^{2}+12 x+k=0$ has a double root.
(or)
12. (a) If α, β, γ are the roots of $x^{3}+2 x^{2}+3 x+3=0$, find $\sum \frac{\alpha^{2}}{(\alpha+1)^{2}}$.
(b) Diminish the roots of $3 x^{3}+8 x^{2}+8 x+12=0$ by 4 .
13. Find the evolute of $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
(or)
14. A rectangular box open at top is to have a given capacity k, find the dimensions of the box requiring least material for its construction.
15. (a) Solve $y^{\prime \prime}+y=\tan x$ by the method of variation of parameter.
(b) Solve $\left(D^{3}+D^{2}-D-1\right) y=\cos 2 x+7 e^{x}+x^{2}$.
(or)
16. (a) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=x^{2}$.
(b) Solve $\frac{d x}{d t}+y=\sin t ; \frac{d y}{d t}+x=\cos t$
17. (a) ω and ω_{o} are unequal positive constants and $\frac{d^{2} y}{d t^{2}}+\omega_{o}^{2} y=\cos \omega t$. Given $\mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=0$, show that $y=\frac{\cos \omega t-\cos \omega_{0} t}{\omega_{0}{ }^{2}-\omega^{2}}$
(b) Determine the bending curve given $\frac{d^{2} y}{d x^{2}}=\frac{P(I-x)}{E I}$ and $\mathrm{y}=0, \frac{d y}{d x}=0$ at $\mathrm{x}=0$.

> (or)
18. A particle of mass m , falling under gravity is experiencing a resistance equal to $\mathrm{mg} / \mathrm{k}^{2}$ times the square of its velocity. Find (i) its velocity (ii) the distance covered by it, at time t given that it starts from rest.
19. (a) Prove that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$ where $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$
(b) Prove $\bar{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force. Find φ so that $\nabla \phi=\bar{F}$.
(or)
20. Given the vector $\bar{F}=\left(x^{2}-y^{2}\right) \hat{i}+2 x y \hat{j}+\left(y^{2}-x y\right) \hat{k}$ verify GaussDivergence theorem over the cube with centre at the origin and of side length a.

