SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E /B.Tech - Common to ALL Branches (Except to Bio Groups)
Title of the paper: Engineering Mathematics - II
Semester: II
Sub.Code: ET202A/3ET202A/4ET202A/5ET202A
Date: 24-05-2008

Max. Marks: 80 Time: 3 Hours Session: FN
PART - A
$(10 \times 2=20)$

Answer All the Questions

1. Solve the equation $x^{3}+6 x+20=0$, are root being $1+3 i$.
2. Diminish the roots of $x^{4}-5 x^{3}+7 x^{2}-4 x+5=0$ by 2 and find the transformed equation
3. Find the radius of curvature $y^{2}=2 x\left(3-x^{2}\right)$ at the points where the tangents are parallel to x axis.
4. Find the maximum and minimum values of $f(x, y)=x^{3}+3 x y^{2}-$ $15 x^{2}-15 y^{2}+72 x$
5. Solve the equation:
$(x+2 y) d x+(2 x+y) d y=0$.
6. Solve the method of variation of parameters:

$$
\left(D^{2}-2 D\right) y=e^{x} \sin x
$$

7. Compute the time required for a particle, in simple flarmonic motion with amplitude 20 cm and periodic time 4 seconds, in passing between two points which are at distances 15 cm and 5 cm from the origin 0 .
8. Determine the change and current at time $\mathrm{t}>0$ in a RC-circuit with $\mathrm{R}=10, \mathrm{c}=2 \times 10^{-4}, \mathrm{E}=100 \mathrm{~V}$ given that $\mathrm{Q}(\mathrm{t}=0)=0$.
9. Prove that grade $\left(\frac{f}{g}\right)=\frac{\text { fgradf }- \text { fgradg }}{g^{2}}$
10. If $u=x^{2}-y^{2}$, prove that $\nabla^{2} u=0$.
PART - B

Answer All the Questions

11. (a) Find the condition that the roots of the equation
$x^{3}+p x^{2}+q x+r=0$ may be in A-P.
(b)Solve $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.
(or)
12. (a) Find the condition that the roots of the education $x^{3}-p x^{2}+q x-r=0$ may be in G-P.
(b) Solve the equation:
$6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0$.
13. (a) Find the radius of curvature at the indicated point:

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} a t(x, y)
$$

(b) Find the evolute of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Deduce the evolute of a rectangular hyperbola?
(or)
14. (a) Determine the envelope of the two parameter family of parabola $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$. where the two parameters a and b are connected by the relation $\mathrm{a}+\mathrm{b}=\mathrm{c}$ where c is a given constant.
(b) Find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the condition $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$
15. (a) Solve the equation

$$
\left(D^{3}-2 D^{2}-5 D+6\right) y=2 e^{x}+4 e^{3 x}+7 e^{-2 x}+8 e^{2 x}+15 .
$$

(b) Solve the differential equation by the method of variation of parameters $\left(\mathrm{D}^{2}-3 \mathrm{D}+2\right) \mathrm{y}=\frac{1}{1+e^{-x}}$
(or)
16. Solve $\left(D^{2}+D+1\right) x+\left(D^{2}+1\right) y=e^{t}\left(D^{2}+D\right) x+D^{2} y=e^{-t}$.
17. A circuit consists of an inductance of 0.05 henrys, a resistance of 5 ohms and a condenser of capacitance 4×10^{-4} farad. If $\mathrm{Q}=\mathrm{I}=\mathrm{o}$ when $t=0$, find $Q(t)$ and $I(t)$ when
(a) there is a constant emf of 110 volts,
(b) there is an alternating emf $200 \cos 100 \mathrm{r}$.
(c) find the steady state solution in is (b)
(or)
18. Find the angular motion $\mathrm{Q}(\mathrm{t})$ of a forced undamped pendulum whose equation is given by $Q+w^{2}{ }_{o} t=F_{o}$ sinkt where w_{o} and F_{o} are constants. If $\mathrm{x}=\mathrm{x}=0$ at $\mathrm{t}=0$.
19. Verify the Gauss divergince theorem for $\vec{F}=4 x z \vec{i}-y^{2} \vec{j}+y z \vec{k}$ over the cube bounded by $\mathrm{x}=0, \mathrm{x}=$ $1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$. (or)
20. (a) Find the directional derivative of $f=x y z$ at $(1,1,1)$ in the directions of $\mathrm{i}+\mathrm{j}+\mathrm{k}, \mathrm{i},-\mathrm{i}$.
(b) Evaluate $\iint_{s} \vec{F} \cdot n^{2} d s$, where $\vec{F}=z \vec{i}+x \vec{j}-y^{2} z \vec{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=1$, included in the first octant between the planes $\mathrm{z}=0$ and $\mathrm{z}=2$.

