Probability and Random Processes

Con. 3496-08.

[REVISED COURSE]

CO-2944

(3 Hours)

[Total Marks: 100

N.B.: Answer any five questions.

- 1. (a) Give the following definitions of probability with the short comings if any :-
 - (i) A priori or classical definition
 - (ii) A posteriori or relative frequency definition
 - (iii) Axiomatic definition.
 - (b) State and prove Bayes' theorem.

4

8

- (c) In a factory, four machines A₁, A₂, A₃ and A₄ produce 10× of the items respectively. The percentage of defective items produced by them is 5%, 4%, 3% and 2% respectively. An item selected at random is found to be defective. What is the probability that it was produced by the machine A2?
- (a) Define discrete and continuous random variables. Give one example of each type. 10 Define Expectation of discrete random variable and continuous random variable.
 - (b) The joint density function of two cortineous random variables is given by 10

$$f(x, y) = \begin{cases} xy/8 & 0 < x < 2, & 1 < y < 3 \\ 0 & \text{otherwise} \end{cases}$$

Find : (a) E(X)

- (a) Suppose X and Y are two random variables. Define covariance and correlation 10 coefficient of X and X When do we say that X and Y are -
 - (i) Orthogonal
 - (ii) Independent a

Are uncorrelated random variables independent?

- (b) Prove $\mid C_{xv} \mid \leq \sigma_x \cdot \sigma_v$. 10 If x, y are two random variates with standard deviations σ_x and σ_y and if C_{xy} is the covariance between them.
- (a) Define Entropy of a Discrete Random Variable.

2 + 8

(b) A random sample X has the following probability mass function.

X = x	1	2	3	4	5	6
P(X = x)	3/8	3/8	1/8	1/16	1/32	1/32

Find the Entropy.

Con. 3496-CO-2944-08.

(c) The joint probability function of two random variables x an y is given by :-

$$f(x, y) = \begin{cases} c(x^2 + 2y) & x = 0, 1, 2 \\ 0 \text{ otherwise} & y = 1, 2, 3, 4 \end{cases}$$

Find (a) the value of c,

- (b) p(x = 2, y = 3)
- (c) $p(x \le 1, y > 2)$ and
- (d) marginal probability functions of x and y.

5. (a) Let
$$f_{xy}(x,y) = 1$$
, $0 < |y| < x < 1$
= 0 otherwise.
Determine $E(X/Y)$ and $E(Y/X)$

- (b) Define a random process giving an example
 - Define (i) mean
 - (ii) autocorrelation and
 - (iii) autocovariance of a random process.
- 6. (a) If X(t) is an ergodic process, show that $S_{xx}(w) = \int_{-\infty}^{\infty} R_{xx}(\tau)e^{-jwt} d\tau$ where 10 $\tau = t_2 t_1$, t_1 and t_2 being two instants of time.
 - (b) Explain power spectral density function. State its important properties and prove 10 any one property

10

10

10

- 7. (a) Explain in bring:-
 - (i) WSS process
 - (ii) Poisson process
 - (iii) Queueing system.
 - (b) If $x = \cos \theta$ and $y = \sin \theta$ where θ is uniformly distributed over $(0, 2\pi)$. 10 Prove that -
 - (i) x and y are uncorrelated
 - (ii) x and y are not independent.