PHYSICAL SCIENCES PAPER I (PART 'B')

- 41. The resolution of a Michelson interferometer operating with a light source of 640 nm wavelength is
 - 1280 nm. 1.
 - 2. 640 nm.
 - 3. $80 \, nm$.
 - 4. 1 nm.
- 42. When a terminal is at virtual ground, then
 - 1. both current and voltage are zero.
 - 2. only voltage will be zero.
 - 3. only current will be zero.
 - 4. both voltage and current are not zero.
- Platinum resistor (PTR) and a thermistor(THR) are used to me sure room temperature. 43. Which of the following is true?
 - PTR offers more accuracy, THR more resolution. 1.
 - 2. PTR offers more resolution, THR more accuracy.
 - Both offer same accuracy, THR offers mege resolution. 3.
 - Both offer same resolution, PTR offers gare accuracy. 4.
- A four bit A/D converter is used to converter an analog voltage of 8 V. The maximum error is 44.
 - 1. 0.5 V.
 - 2. $1.0 \ V.$
 - 3. 2.0 V.
 - 0.25 V.
- A voltage of 2300 was is applied to a cylindrical counter with an anode wire of radius 45. 0.01 cm and a cathrolle inner radius of 1.0 cm. The electric field at the anode surface is
 - 1.
 - 2.
 - 3.
 - $5 \times 10^2 V/cm$ 4.
- 46. A y-ray of energy 1 keV is passed through a solid absorber of thickness 3 cm and mass attenuation coefficient 3 cm^2/g at temperature T_1 . If the same absorber is melted at temperature T_2 , the mass attenuation coefficient will be
 - $3 (T_1/T_2)^2 cm^2/g$ $1/3 cm^2/g$ 1.
 - 2.
 - $3 cm^2/g$. 3.
 - $3 (T_2/T_1)^2 cm^2/g$ 4.

- 47. Five panelists are required to elect a sixth member to the panel. If any of the panelists votes against a member, the member is disqualified. What would be the appropriate electronic circuit to be used in the electronic voting machine to implement the above rule?
 - 1. XOR
 - 2. XNOR
 - 3. OR
 - 4. AND
- 48. In an op-amp, when the input signal drives the output at a rate of voltage change greater than the slew rate, then the resulting signal
 - is enhanced. 1.
 - 2. is clipped.
 - is unaffected. 3.
 - remains the same, but with 90° phase difference.
- Sensitive experiments are often performed inside a metal enclosive Apown as a Faraday 49. cage. Which of the following of Maxwell's equations governs the principle of operation of the cage?
 - $\nabla . \vec{E} = \rho / E_0$

 - 2. $\nabla .B = 0$ 3. $\nabla \times E = -\partial B / \partial t$
- Consider the following operation amplifier circuit with an input signal of frequency 50. 10 *kHz.*

- 51. For the ground state of a particle moving freely in a one-dimentional box $0 \le x \le L$ with rigid reflecting end-points, the uncertainty product (Δx) (Δp) is
 - 1. h/2
 - 2. **√**2 h
 - 3. >h/2
 - 4. h**/√**3
- Consider a system of two spin-half particles, in a state with total spin quantum number S = 0. The eigenvalue of the spin Hamiltonian $H = A \stackrel{\text{I}}{S_1} \stackrel{\text{I}}{S_2}$ (A is a positive constant) in this state is

- 1. $Ah^2/4$
- 2. $-Ah^2/4$
- 3. $3Ah^2/4$
- 4. $-3Ah^2/4$
- 53. The energy of a 200 nm photon is
 - 1. 0.01 eV
 - 100 eV
 - 3. 10 eV
 - 4. 1 eV
- 54. The wave function $\psi(r)$ of a particle moving in three-dimensional space has the physical dimensions of
 - 1. (Length)
 - 2. (Length 7
 - 3. (Langua)
 - 4. Length
- 55. The eigenvalues of the Pauli spin matrix $\sigma_y = \begin{pmatrix} \theta & -i \\ i & 0 \end{pmatrix}$ are
 - 1. +1,+1
 - 2. +1, -1
 - 3. -i,+i
 - 4. +i,+i

- 56. The ground state energy of a particle in an infinite square-well potential of width L is E. If the width of the wall is reduced to L/2, then the ground state energy becomes
 - 1. 2E
 - 2. E/2
 - 3. 4E
 - E/4
- 57. The classical definition of the orbital angular momentum of a particle is $\stackrel{\cdot}{L} = \stackrel{\cdot}{r} \times \stackrel{\cdot}{p}$. The corresponding quantum mechanical definition for the orbital angular momentum operator (taking into account the fact that $\stackrel{\cdot}{r}$ and $\stackrel{\cdot}{p}$ do not commute with each other) is
 - 1. $\overset{1}{L} = \overset{\mathbf{r}}{r} \times \overset{\mathbf{r}}{p}$
- Given the Hamiltonian $\hat{H} = \hat{H}_0 + i\hat{T}$, where \hat{H} and \hat{T} are hermitian operators, which of the following statements are correct?
 - 1. \hat{H} is a hermitian operator and the total probability is conserved
 - H is a hermitian operator and the total probability is <u>not</u> conserved.
 - 3. \hat{H} is <u>not</u> a herminant operator and the total probability is conserved
 - 4. \hat{H} is <u>not</u> a hermitteen operator and the total probability is <u>not</u> conserved
- 59. The Hamilton an of a three-level system is

$$H = a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

The energy eigenvalues are

- 1. 2α , α , $-\alpha$
- 2. 2a, a, 0
- 3. 2a, 0, 0
- 4. 2a, a, a

60. The ground state energy of a particle in the one-dimensional potential

$$V(x) = \begin{cases} \frac{1}{2} m w^2 x^2 & \text{for } x > 0 \\ \\ \text{co for } x < 0 \end{cases}$$

is equal to

- 1. ha
- 2. $\frac{3}{2}h\omega$
- 3. 2h a
- 4. $\frac{5}{2}$ ha
- 61. Let k be the wave number of the incident plane wave in a scattering experiment. If the scattering is purely a p-wave with the phase shift $\delta_1 = \pi/4$, then the total scattering cross-section is
 - 1. $2\pi/k^2$
 - 2. $6\pi/k^2$
 - 3. 0
 - 4. k^2
- 62. Plane polarized light will be rotated when it is passed through a solution of
 - 1. NaClO
 - CH Cl \(\bar{k} \)
 - 3. HC Br 🖏 F
 - 4. Brock
- 63. The specific heat of silicon monoxide at high temperatures, as compared to silicon dioxide, is
 - larger.
 - smaller.
 - equal.
 - 4. dependent on other parameters not specified here.

- 1. the rotational spectrum of CO.
- the vibrational spectrum of N₂.
- the NMR spectrum of CH₄.
- 4. the Mossbauer spectrum of Fe₃ O₄.

65. The figure below shows a "bead-spring" model of a simple cubic crystalline lattice. The springs have spring constants k and the lattice spacing is a. For this model, the shear modulus governing displacements along the x - direction with a gradient along the z - direction is:

- 1. 0.
- 2. k/a.
- k / 6a.
- 4. k/a^2 .

66. The ratio $\kappa/\sigma T$ (where κ is the thermal conductivity, σ is the electrical conductivity and T is the temperature) for κ

- 1. is strongly legendent on the number density of the charge carriers.
- is independent of the temperature T.
- varies widely from one metal to another.
- 4. is preximately independent of the particular metal.

67. Let $U(x) = \frac{1}{2}ax^2 - bx^3 + cx^4$ be the energy cost of stretching the unit cell of a certain crystal

by an amount x, (a, b) and c are constants with a and c being positive). Then at temperature T the coefficient of linear thermal expansion (to first order in b and zeroth order in c) is proportional to

- 1. a^2b .
- 2. b/a^2 .
- 3. a^2/b .
- 4. $1/ba^2$

- 68. The dispersion relation for spinwaves in a three dimensional Heisenberg ferromagnet is $\omega = Ak^2$, where ω is the frequency, k is the wave number, and A is a constant. The contribution of spin waves to the specific heat, at low temperatures T, is proportional to
 - 1. $T^{2/3}$
 - 2. T^{3/2}
 - 3. T²
 - 4. $T^{1/2}$
- 69. For a one-dimensional monatomic lattice with lattice constant a the normal modes satisfy the relation
 - 1. $\omega(q) = \omega\left(q + \frac{2\pi}{a}\right)$
 - 2. $\omega(q) = \omega\left(q + \frac{\pi}{2a}\right)$
 - 3. $\omega(q) = \omega\left(q + \frac{\pi}{q}\right)$
 - 4. $\omega(q) = \omega(q + 2\pi a)$
- 70. Consider a gas of non-interacting electrons at T=0. If the electrons (of mass m) are replaced by neutrons (of mass M) keeping the density n=N/V the same, the Fermi energy ε_F is changed by a factor
 - 1. $\frac{M}{m}$
 - $2. \qquad \left(\frac{M}{m}\right)^{\frac{2}{3}}$
 - 3.
 - 4. $\frac{m}{M}$
- 71. For a one-dimensional Debye solid, the lattice specific heat at low temperatures T will be proportional to
 - 1. $T^{1/2}$
 - 2. T
 - 3. $T^{3/2}$.
 - 4. T^2 .

- 72. The dispersion relation for a certain type of excitation is given by $\omega = A k^a$, where A and a > 0 are constants. For these excitations, the group velocity is less than the phase velocity when
 - 1. a=1.
 - 2. $a = \sqrt{2}$
 - 3. $\alpha \leq 1$.
 - a ≥ 2.
- 73. ¹⁰Be in its first excited state has spin-parity 2⁺. It gets de-excited to the ground state, which has spin parity 0, by y-emission. The multipoles carried by y are
 - 1. E2.
 - M2.
 - E2, M2.
 - 4. E4.
- 74. Two protons are placed at a distance of about 10 cm, from each other. The ratio of the strength of strong and electromagnetic forces between them is roughly
 - 1. 10.
 - 2. 1.
 - 3. 10^3
 - 4. 10⁻⁵.
- 75. Which of the following is not an acceptable potential for the deuteron $(V_0 > 0; k, \mu > 0)$?
 - 1. $V(r) = V_0 e^{i \vec{k} \cdot \vec{k}}$;
 - 2. $V(r) = V_0$ for $r < R_0$

- $V(r) = -\frac{1}{2}kr^2$
- 4. $V(r) = \frac{-V_0}{1 + e^{\mu r}}$

- 1. $\frac{e^2}{s^2}$
- $2. \qquad \frac{e^4}{e^2}.$
- constant.
- 4. $\frac{e^4}{s}$

77. Which of the following is true for β -decay of the neutron? The process

- 1. violates both parity and charge conjugation symmetry.
- 2. violates parity but conserves charge conjugation symmetry.
- conserves parity but violates charge conjugation symmetry
- 4. conserves both parity and charge conjugation symmetry.

78. The Coulomb repulsion term which contributes to the dividing energy of a nucleus ${}^{A}X_{Z}$ is proportional to

- l. Z.
- 2. Z^2
- 3. Z(Z-1)
- 4. It is independent of Z

79. In the quark model, the state of
$$\pi^+$$
 is given by $\mu d >$. The states for π^- and π^0 are then given by

- 1. $[\overline{u}\overline{u}]$, $[\overline{u}\overline{u} + d\overline{d}]$
- 2. $|\overline{u}^{\dagger}d\rangle$; $\frac{1}{\sqrt{2}}|u\overline{u}-d\overline{d}\rangle$
- 3. $|\overline{u}d\rangle$; $|u\overline{u}\rangle$.
- 4. $|\overline{u}d\rangle$; $|d\overline{d}\rangle$

- 80. The neutral pion π^0 at rest decays into two photons. One of the photons is right circularly polarized. The other photon is
 - 1. also right circularly polarized.
 - 2. left circularly polarized.
 - unpolarized.
 - 4. plane polarized.
- 81. A 100 MeV proton and a 100 MeV alpha particle are detected in the same detector. What is the ratio of energy loss per unit path length i.e. $\left(\frac{dE}{dx}\right)_{v}: \left(\frac{dE}{dx}\right)_{a}$?
 - 1. 1:1.
 - 2. 1:2.
 - 3. 1:4.
 - 4. 1:16.
- 82. The number of ways in which 5 identical bosons an se distributed in 4 states is
 - 1. $\frac{8!}{5!3!}$
 - 2. <u>91</u> 5141
 - 3. $\frac{9!}{4!4!}$
 - 4. $\frac{8!}{4!4!}$
- 83. An adjanaen the PV-plane is a curve of
 - 1. constant temperature
 - constant entropy
 - constant pressure
 - 4. constant volume

- 84. The standard deviation of the energy of a system in the canonical ensemble is equal to
 - 1. $\sqrt{C_i}$
 - 2. $k_{\rm B}T^2{\rm C}$
 - 3. $\sqrt{k_B T^2 C_v}$
 - 4. $\sqrt{k_BTC_v}$
- 85. Blackbody radiation is enclosed inside a spherical cavity of radius r at a temperature T. What would be the temperature of the enclosure if the radius expands r adiabatically?
 - 1. T/2
 - 2. T
 - 3. *T*/√2
 - 4. 2*T*
- 86. Which of the following is <u>not</u> a periodic function of θ ?
 - 1. $\sin \theta + \pi \cos \theta$
 - 2. $\sin(\pi\theta) + \cos(\pi\theta)$
 - 3. $\sin\theta + \cos(\sqrt{\theta})$
 - 4. $\sin \theta \cos(\theta + \pi)$
- 87. A given $(n \times n)$ nilpotent matrix A satisfies the equation $A^k = 0$ for $1 \le k \le n$. Therefore,
 - exactly k eigenvalues of A must be zero.
 - exactly (n-k) eigenvalues of A must be zero.
 - every eigenvalue of A is zero.
 - A can have (n-1) non-zero eigenvalues.

- 1. is singular at $x = \pm 1$
- 2. satisfies $\int_{-1}^{1} dx P_n^2(x) = 1$
- 3. satisfies $\int_{-1}^{1} dx P_n(x) = 0 \text{ for } n \ge 1$
- 4. is always an even function of x
- 89. The residue of e^{2/z^2} at z = 0 is
 - 1. 0
 - 2. ∞
 - 2π²
 - 4. 2
- 90. The Newton Raphson iteration for aula for the square-root of the real number A=5 is

1.
$$x_{n+1} = \frac{x_n^2 - A + 5}{2x_n}$$

$$2. x_{n+1} = \frac{x_{n+1}^2 + 4 - 5}{x_n}$$

$$3. \qquad = x_n - \frac{x_n}{\sqrt{A-5}}$$

4.
$$x_{n+1} = x_n - \frac{1}{\sqrt{A-5}}$$

- 1. $4\sqrt{\pi}$
- 8√π
- 3. 4 π
- 4. 8 π

92. If $\overset{1}{A}$ and $\overset{1}{B}$ are two unit vectors and $\theta \neq 0$ is the angle between them, then

- 1. $\sin \theta = \frac{1}{2} \begin{vmatrix} r & r \\ A + B \end{vmatrix}$
- 2. $\sin \theta = \frac{1}{2} \begin{vmatrix} r & r \\ A B \end{vmatrix}$
- 3. $\sin \frac{\theta}{2} = \frac{1}{2} \left| \stackrel{r}{A} \stackrel{r}{B} \right|$
- 4. $\sin \frac{\theta}{2} = \frac{1}{2} \begin{vmatrix} r & r \\ A + B \end{vmatrix}$

93. The number of independent of independent of a symmetric and an antisymmetric tensor of rank 2 (in 3-dimensions) are respectively,

- 1. 6.6
- 2. 9,3
- 3. 6, 3
- 4. 3..6u..\v

94. The trapezoidal, Simpson's 1/3 and Simpson's 3/8 rules are exact for polynomials of order

- 1. 1, 2, 3 respectively
- 2. 1, 3, 3 respectively
- 3. 1, 3, 4 respectively
- 4. 2, 3, 4 respectively

- 1. zero
- 2. one
- 3. two
- 4. three

96. Let E_1 , E_2 , E_3 be the first three energy levels of a hydrogen atom. Consider the ratio $(E_3-E_2)/(E_2-E_1)$. Neglecting the fine structure condition this ratio is approximately equal to

- 1. $\frac{27}{5}$
- 2. $\frac{1}{27}$
- 3. $\frac{27}{4}$
- 4. $\frac{5}{27}$

97. The rotational energy levels of a right diatomic molecules are given by $E_J = B_e J(J+1)$ where J is the rotational quantum number and B_e is a the constant. The rotational absorption spectrum of the molecules therefore consists of

- 1. one resonance like
- 2. lines that are equally spaced
- lines where the spacing increases with frequency
- 4. lines where the spacing decreases with frequency

98. For an arem with two energy levels placed in a cavity containing blackbody radiation, the ratio of the probabilities for spontaneous emission and stimulated emission is given by

 $\frac{A}{B} = \frac{8\pi h v^3}{c^3}$, where A and B are the corresponding Einstein coefficients and v is the

frequency of the photon emitted. The probability of spontaneous emission

- is independent of the energy difference between the two levels.
- increases with the energy difference between the two levels.
- decreases with the energy difference between the two levels.
- 4. is zero.

99. Consider a parallel plate capacitor connected to an AC voltage source (as shown in Fig. 1). A conducting slab is introduced in the space between the plates from above (as shown in fig.2).

The capacitance of the parallel plate capacitor

- goes to zero.
- increases to a finite value.
- decreases to a non-zero value.
- becomes infinite.
- 100. The volume of a thermodynamic system increases irreversion, by an incremental amount δ V. If P is the pressure, the work done on the system is *
 - 1. $\delta W = P \delta V$
 - 2. $\delta W = -P \delta V$
 - 3. $\delta W \leq -P \delta V$
 - 4. $\delta W > -P \delta V$
- 101. Two localized non-interacting spirit/Lymagnetic ions of magnetic moment μ are placed in an external magnetic field H, at temperature T. If $k_BT>> \mu H$, then the entropy of the system is, to a good approximation
 - 1. $S = k_B \ln 2$
 - 2. $S = 2k_B \ln \delta$
 - $S = 3k_{\text{EM}} \hat{\mathbf{r}} \hat{\mathbf{r}}$
 - 4. S=4
- 102. A thermodynamic system is classified as closed if it can
 - exchange energy with its surroundings, but not matter
 - exchange both energy and matter with its surroundings.
 - exchange neither energy nor matter with its surroundings.
 - 4. exchange only matter, but not energy, with its surroundings
- 103. Consider an elastic string of length L under tension τ at temperature T. Let U and S be its internal energy and entropy, respectively. Then the conjugate pairs of thermodynamic variables are
 - (τ, T) and (L, S)
 - (L, τ) and (T, S)
 - (T, L) and (τ, U)
 - (L, S) and (T, U)

- 104. At 100°C, water vapour and liquid water coexist in thermodynamic equilibrium in a closed container. If μ and S represent the chemical potential and entropy respectively, then at the interface
 - 1. $\mu_{\text{vapour}} = \mu_{\text{liquid}}$
 - 2. $S_{\text{vapour}} = S_{\text{liquid}}$
 - Sympour < Sliquid
 - 4. $\mu_{\text{vapour}} > \mu_{\text{liquid}}$
- 105. A system in thermal equilibrium consists of subsystems A and B that interact only weakly with each other. If Z_A and Z_B are the canonical partition functions of A and B respectively, the partition function of the total system is given, to a good approximation, by
 - 1. $Z_A + Z_B$
 - $2. Z_A/Z_B$
 - 3. $Z_A Z_B$
 - 4. $Z_A Z_B$
- 106. Consider an infinite horizontal surface with fixed surface charge density σ , where \hat{n} is the upward normal to the surface. If an electric field $\hat{E}_b = E\hat{n}$ is applied from below, the electric field \hat{E}_a in the region above the surface is
 - 1. $\overset{\mathbf{r}}{E}_{a} = \overset{\mathbf{r}}{E}_{b} \frac{\sigma}{2 s_{0}} \hat{\mathbf{r}}_{a}$
 - 2. $\overset{\mathbf{f}}{E}_{a} = \overset{\mathbf{f}}{E}_{b} + \frac{\sigma}{2\varepsilon_{0}} \hat{n}$
 - 3. $\overset{\mathbf{r}}{E}_{a} = \overset{\mathbf{r}}{E}_{b} \overset{\mathbf{q}}{\mathbf{q}}$
 - 4. $\frac{\mathbf{f}}{E_0} = 1 + \frac{\sigma}{\varepsilon_0} \hat{\epsilon}$
- 107. A charged particle is travelling in the positive x-direction with a constant velocity. An observer located at a point P on the y-axis observes the electric field due to this charge. Let $\hat{e}(t)$ be the unit vector along the electric field at any time t, and $\hat{n}(t)$ the unit vector in the direction of the position vector of the charge with respect to the observer. Then
 - 1. $\hat{e}(t)$ lags behind $\hat{n}(t)$
 - 2. $\hat{e}(t)$ leads $\hat{n}(t)$
 - 3. $\hat{e}(t)$ is always in the same direction as $\hat{n}(t)$
 - 4. $\hat{e}(t)$ is always perpendicular to $\hat{n}(t)$

- 108. A current carrying loop lying in the plane of the paper is in the shape of an equilateral triangle of side a. It carries a current I in the clockwise sense. If \hat{k} denotes the outward normal to the plane of the paper, the magnetic moment \hat{m} due to the current loop is
 - 1. $\hat{m} = a^2 I \hat{k}$
 - 2. $\hat{m} = -\frac{1}{2}\alpha^2 I \hat{k}$
 - 3. $\hat{m} = \frac{\sqrt{3}}{2} \alpha^2 I \hat{k}$
 - 4. $\dot{m} = -\frac{\sqrt{3}}{4}\alpha^2 I \hat{k}$
- 109. Consider an infinite line charge with linear charge density λ. At a distance r from the line, the electrostatic potential has the form
 - 1. $\frac{\lambda a}{4\pi \varepsilon_0 r}.$
 - $2. \qquad \frac{\hat{\lambda}}{4\pi\varepsilon_0} \exp(-r/a)$
 - 3. $\frac{\lambda}{4\pi\varepsilon_0} \ln(\gamma/a)$
 - 4. $\frac{\lambda}{4\pi\varepsilon_0}\frac{r}{a}$

where α is a constant with dimension of length.

110. A thin dielectric site is slowly introduced partially between the plates of a charged parallel plate capacitor.

Which of the following is true?

- 1. The slab is pushed out of the region between the capacitor plates.
- 2. The slab is sucked into the region between the capacitor plates.
- The slab moves towards the positively charged plate.
- 4. The slab moves towards the negatively charged plate.

- An electric point charge +q is placed at the point (1, 1) of the xy-plane in which two 111. grounded semi-infinite conducting plates along the positive x and y-axes meet (see figure). The electric potential in the positive quadrant at a large distance r goes as
 - 1.

 - $V(r) \sim r^{-4}$
- In a given frame of reference, it is found that the electric field $\stackrel{1}{E}(\stackrel{r}{r},t)$ and the magnetic 112. field B(r,t) are perpendicular to each other at all points, i.e. $E(r,t) \cdot B(r,t) = 0$. If the fields observed in any other inertial frame are $\stackrel{1}{E}$ and $\stackrel{1}{B}$, then
 - $\stackrel{1}{E}' / \stackrel{1}{B}'$ at all points.
 - 2. E'⋅B' ≤ 0 at all points.
 3. E'⋅B' > 0 at all points.

 - 4. $\stackrel{1}{E}' \cdot \stackrel{1}{B}' = 0$ at all points.
- Consider the $(n \times n)$ matrix A with every element equal to unity. Which of the following statement is correct? 113.
 - The eigenvalues of A are all qua to unity. 1.
 - All the eigenvalues of A dre gero. 2.
 - The largest eigenvalue of a is n. 3.
 - A cannot be diagonalised by a similarity transformation. 4.
- The total energy A_0 is a particle of mass m executing small oscillations about the origin 114. along on the x direction is given by

$$E = \frac{1}{2}mv^2 + V_0 \cosh\left(\frac{x}{L}\right),$$

where V_0 and L are positive constants. The time period T of oscillation is

- $T = \frac{1}{2\pi} \sqrt{\frac{m}{V_0}}.$
- $2. T = 2\pi \sqrt{\frac{L}{m}}.$
- 3. $T = \pi L \sqrt{\frac{m}{R}}.$
- 4. $T = 2\pi \sqrt{\frac{mL^2}{V_0}}.$

- 115. A canonical transformation in classical Hamiltonian dynamics
 - 1. cannot be made if there is more than one degree of freedom.
 - leaves the canonical Poisson bracket relations unchanged.
 - can only be made for the cartesian components of the coordinates and momenta.
 - 4. cannot be time-dependent.
- 116. The motion of a particle of mass m is described in a non-inertial frame of reference that is rotating with a uniform angular velocity $\hat{\omega}$. If \hat{r} denotes the position of the particle in the non-inertial frame
 - 1. the centrifugal force on the particle is $-m\omega^2 r$
 - 2. the centrifugal force on the particle is $-m \dot{a} \times (\dot{a} \times \dot{r})$.
 - 3. the Coriolis force on the particle is $-m\left(\frac{r}{\omega} \times \frac{d^{r}}{dt}\right)$
 - 4. the Coriolis force on the particle $-2m\omega^2 r$
- 117. The Lagrangian of a particle of mass m moving in a central p of ential p of p is

$$L = \frac{1}{2} m \left(n \dot{\partial} + r \ \partial^2 + r^2 \sin^2 \theta \ \phi \dot{\partial} \right) - V(r)$$

- θ is a cyclic coordinate.
- θ and φ are cyclic coordinates
- φ is a cyclic coordinate
- 4. r is a cyclic coordinate
- 118. A relativistic particle of rest mass m_0 is moving with a speed ν . The value of ν at which its kinetic energy is equal to its rest energy is
 - 1. $a_1 = c/2$
 - 2. **∞ 3=** €/4
 - 3. $v = c/\sqrt{2}$
 - 4. $v = 2(\sqrt{2}-1)c$
- 119. An asymmetric rigid body has three distinct principal moments of inertia, with $I_x \le I_y \le I_z$. If we consider rotation with uniform angular velocity about the x, y and z axes, respectively, then the motion is
 - stable about the y-axis, but not about the x and z axes.
 - stable about the x and y axes, but not about the z-axis.
 - 3. stable about the y and z axes, but not about the x axis.
 - stable about the x and z axes, but not about the y-axis.

- 120. The constant acceleration due to gravity on the surface of a planet whose mass is twice the mass of Earth is found to be the same as the constant acceleration due to gravity on the surface of Earth. If R_e is the radius of Earth, then the radius of the planet must be
 - 1. $2R_{\bullet}$
 - 2. $R_{\bullet}/2$
 - 3. 4*R*€
 - 4.
- A particle of electric charge +q and mass m is fired at a nucleus of charge +Q and mass M in 121. a Rutherford scattering experiment. In the center of mass frame,
 - 1. the total energy, the total angular momentum and the total linear momentum are all conserved.
 - the total energy and the total angular momentum are conserved, but not the total 2. linear momentum
 - the total energy is conserved, but not the total angular montantum and the total linear 3. momentum
 - only the total electric charge is conserved, and no other quantity is conserved 4.
- A particle moves in the central potential V(r) shown the figure below 122.

Which of the following statements is true?

- Both a stable circular orbit and an unstable circular orbit are possible 1.
- Opdy a sauble circular orbit is possible 2.
- 3. Qnly an unstable circular orbit is possible
- Ro vircular orbit is possible
- A particle of mass m is thrown upwards from the surface of the Earth with initial velocity 123. components u_x and u_y along the horizontal and vertical directions respectively. The trajectory, therefore is given by $x(t) = u_x t$, $y(t) = u_y t - \frac{1}{2}gt^2$. The instant of time at which the acceleration and velocity vectors are perpendicular to each other is given by

 - 2. $|u_x u_y|/g$ 3. $(u_x + u_y)/g$ 4. u_y/g

124. The Lagrangian of a particle of mass m moving in two dimension is

$$L = \frac{1}{2}m(x^2 + y^2) - \frac{1}{2}k(x^2 + y^2)$$

If the particle has a finite angular momentum l about the origin, then we may conclude that it executes

- 1. oscillatory motion about the origin r = 0
- 2. periodic motion with a constant value of r
- oscill atory motion along the x-axis
- 4. oscillatory motion along the y-axis
- 125. A particle moves in one dimension in a potential $V(x) = x^2/2 + x^3/3$, in suitable units. If E is the total energy of the particle, then the motion is
 - 1. always bounded if $0 \le E \le \frac{1}{6}$
 - 2. always unbounded if $0 \le E \le \frac{1}{6}$
 - 3. always bounded if $E \le 0$
 - 4. bounded if $0 \le E \le \frac{1}{6}$ and the initial position satisfies $-1 \le x(0) \le \frac{1}{2}$
- 126. Let A and B be the Hermitian operators corresponding to two physical observables of a system, such that [A, B] & We may conclude in general that
 - 1. the uncertainty product is always $(\triangle A)(\triangle B) > \frac{h}{2}$.
 - 2. the system can never be in a state in which $(\Delta A)(\Delta B) = 0$.
 - 3. neither A nor B can have any eigenstates.
 - 4. A and B may have one or more common eigenstate(s), but not a complete set of these.
- 127. The electronic configuration of the ground state of the Na atom is ²S_{1/2}. This implies that
 - 1. S=2, L=0, J=2
 - 2. S=0, L=1/2, J=1/2
 - 3. S = 1/2, L = 0, J = 1/2
 - 4. S=0, L=2, J=2

- 128. The mirrors of a laser cavity are separated by a distance L. If T is the time taken by the light to travel from one mirror to the other and back, the mode separation is
 - 1. $\frac{1}{T}$
 - $2. \qquad \frac{2}{T}$
 - 3. $\frac{1}{2T}$
 - 4. $\frac{1}{\sqrt{2}T}$
- 129. A semiconductor diode is employed for rectification of an alternating voltage of 10V and a current of 1A. The forward voltage on the diode, after the system has been in operation for several hours of power dissipation,
 - 1. does not change
 - 2. increases by ~100 mV
 - 3. increases by ~1 mV
 - 4. degreases by ~ 100 mV
- 130. The maximum efficiency of an algan class B amplifier is
 - 1. 87.5%
 - 2. 50%
 - 3. 68.5%
 - 4. 78.5%
- 131. A free electrical conductivity $\sigma_0 = \frac{ne^2\tau}{m}$ where *n* is the number density of carriers, *e* is the charge of the carriers, τ is the relaxation time and *m* is the effective mass of the carriers. Assuming that there is only one relaxation time, the AC conductivity at frequency ω is modeled by
 - 1. $(1-i\omega \tau)\sigma_0$
 - $2. \qquad \frac{\sigma_0}{1+\omega^2\tau^2}$
 - 3. $(1+i\omega \tau)\sigma_0$
 - 4. $\frac{\sigma_0}{1-i\omega\tau}$

- 132. A proton and a neutron are both subject to a uniform magnetic field. Which of the following is true?
 - Both particles undergo Larmor precession because they have non-zero intrinsic magnetic moments.
 - 2. The neutron does not precess because its intrinsic magnetic moment is zero
 - The proton does not precess because its intrinsic magnetic moment is zero.
 - 4. Both the particles precess and the direction of the precession is the same for the two particles
- 133. The Van der Waals equation of state for 1 mole of a gas is

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

where a and b are constants. If U is the internal energy of n moles a this gas, then $\left(\frac{\partial U}{\partial V}\right)_r$ is

- 1. zero
- $\frac{a}{\left(\frac{V}{n-b}\right)^2}$
- 3. $\left(\frac{a}{nV}\right)$
- 4. $\frac{a}{(V/n)^2}$
- 134. If in interior of a unit sphere we have $\nabla \cdot \vec{J} = a$ positive constant, where \vec{J} is the current density we way conclude that;
 - according to Gauss' theorem, the charge contained in the unit sphere is constant in time
 - 2. according to Gauss' theorem, charge is flowing into the unit sphere
 - according to the continuity equation, the charge density within the unit sphere must necessarily be uniform
 - 4. according to the continuity equation, the change density inside the unit sphere diminishes with time

- 135. Choose the correct statement from the following:
 - 1. The magnetic field $\stackrel{1}{B}$ is a vector and not a pseudovector.
 - 2. $\stackrel{\mathbf{I}}{E}.\stackrel{\mathbf{I}}{B}$ is a scalar and not a pseudoscalar.
 - 3. $\stackrel{\mathbf{I}}{E} \times \stackrel{\mathbf{I}}{B}$ is a pseudovector.
 - 4. The magnetic vector potential $\overset{1}{A}$ is α pseudovector.
- 136. Given any arbitrary electric and magnetic fields $\stackrel{1}{E}(\stackrel{r}{r},t)$ and $\stackrel{1}{B}(\stackrel{r}{r},t)$ was aways possible to choose the scalar potential $\phi(\stackrel{r}{r},t)$ and vector potential $\stackrel{1}{A}(\stackrel{r}{r},t)$ such that
 - 1. $\stackrel{\text{I}}{A}(\stackrel{\text{r}}{r},t)$ is identically zero.
 - 2. $\phi(r,t)$ is identically zero.
 - 3. $A = \begin{pmatrix} r \\ A \end{pmatrix} \begin{pmatrix} r \\ r \end{pmatrix} = r \begin{pmatrix} r \\ r \end{pmatrix}$ is any given non-zero constant
 - 4. the conditions $\nabla \cdot \vec{A} = 0$ and $\nabla \cdot \vec{A} = 0$ are simultaneously satisfied.
- 137. In a certain region A Maxwell's equations for the electric and magnetic fields are given by

$$\nabla \cdot \stackrel{1}{E} = 0$$
, $\nabla \cdot \stackrel{1}{E} = 0$, $\nabla \times \stackrel{1}{E} = -\frac{\partial \stackrel{1}{B}}{\partial t}$, $\nabla \times \stackrel{1}{B} = \mu_0 \varepsilon_0 \frac{\partial \stackrel{1}{E}}{\partial t}$

We may conclude that:

- Both the scalar and the vector potential are necessarily constant in the region R.
- 2. The electric field $\stackrel{\mathbf{I}}{E}$ and the magnetic field $\stackrel{\mathbf{I}}{B}$ must necessarily be uniform in R.
- 3. There are no sources for electric charges and currents in R.
- 4. The electric field $\stackrel{\mathbf{I}}{E}$ is necessarily perpendicular to the magnetic field $\stackrel{\mathbf{I}}{B}$ at every point in R.

138. The sum of

$$1 - \frac{\pi^2}{2! \ 4^2} + \frac{\pi^4}{4! \ 4^4} - \frac{\pi^6}{6! \ 4^6} + \cdots \quad \text{is}$$

- 1. not convergent
- 2. $\frac{\pi}{2}$
- 3. $\frac{\pi}{\sqrt{2}}$
- 4. $\frac{1}{\sqrt{2}}$
- 139. Consider the alpha-decay reaction

$$Po_{84}^{210} \rightarrow Pb_{82}^{206} + He_2^4$$

where atomic masses are

$$m(P_O) = 210.0483$$
 amu

$$m(Pb) = 206.0386$$
 amu

$$m(He) = 4.0039 amu$$

The kinetic energy of the alph a particle will be

- 1. 5.4 keV.
- 2.7 keV.
- 5.4 MeV.
- 4 1ก 8 ไท ซึ่งโ
- 140. Consider the operators a and a⁺, satisfying the commutation relation
 [a, a⁺] = I, the unit operator. There are no normalisable eigenstates of the operator

- 1. a⁺ a
- 2. a
- 3. a¹
- 4. (a^T a)⁴