GATE question papers: Electronics and Communication Engineering 2010 (EC)

Q. No. 1 - 25 Carry One Mark Each

- The eigen values of a skew-symmetric matrix are
 - always zero (A)

- always pure imaginary (B)
- (C) either zero or pure imaginary
- (D) always real
- The trigonometric Fourier series for the waveform f(t) shown below contains

- (A) only cosine terms and zero value for the dc component
- only cosine terms and a positive value for the dc component (B)
- only cosine terms and a negative value for the dc component (C)
- (D) only sine terms and a negative for the dc component
- A function n(x) satisfied the differential equation $\frac{d^2n(x)}{dx^2} \frac{n(x)}{L^2} = 0$ where L is a constant. The 3.

boundary conditions are: n(0)=K and $n(\infty)=0$. The solution to this equation is

 $n(x) = K \exp(x/L)$ (A)

 $n(x) = K \exp(-x/\sqrt{L})$ (B)

 $n(x) = K^2 \exp(-x/L)$ (C)

- $n(x) = K \exp(-x/L)$
- For the two-port network shown below, the short-circuit admittance parameter matrix is 4.

- $\begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}$ S (C)

- 5. For parallel RLC circuit, which one of the following statements is NOT correct?
 - The bandwidth of the circuit deceases if R is increased (A)
 - (B) The bandwidth of the circuit remains same if L is increased
 - (C) At resonance, input impedance is a real quantity
 - At resonance, the magnitude of input impedance attains its minimum value. (D)

At room temperature, a possible value for the mobility of electrons in the inversion layer of a silicon n-channel MOSFET is

(C)

- (A) $450 \text{ cm}^2/\text{V}_{-\text{s}}$
- (B) $1350 \text{ cm}^2/\text{V}_{-\text{s}}$
- $1800 \text{ cm}^2/V_{-s}$
- (D) $3600 \text{ cm}^2/\text{V}_{-\text{s}}$
- 7. Thin gate oxide in a CMOS process in preferably grown using
 - (A) wet oxidation

8.

(B) dry oxidation

(C) epitaxial deposition

- (D) ion implantation
- In the silicon BJT circuit shown below, assume that the emitter area of transistor Q1 is half that of transistor Q2.

The value of current I0 is approximately

- (A) 0.5 mA
- (B) 2mA
- (C) 9.3 mA
- (D) 15mA
- 9. The amplifier circuit shown below uses a silicon transistor. The capacitors C_C and C_E can be assumed to be short at signal frequency and the effect of output resistance r_0 can be ignored. If C_E is disconnected from the circuit, which one of the following statements is TRUE?

- (A) The input resistance R_i increases and the magnitude of voltage gain A_V decreases
- (B) The input resistance R_i decreases and the magnitude of voltage gain A_V decreases
- (C) Both input resistance R_i and the magnitude of voltage gain A_V decrease
- (D) Both input resistance R_i and the magnitude of voltage gain A_V increase

10. Assuming the OP-AMP to be ideal, the voltage gain of the amplifier shown below is

(A)

http://www.questionpapers.net.in

(C)

- (B)
- (D)
- 11. Match the logic ga5tes in Column A with their equivalents in Column B.

1

Column A

- Q
- 2
- R
- 3
- S
- (A) (C) P-2, Q-4, R-1, S-3
- P-2, Q-4, R-3, S-1

- (B) P-4, Q-2, R-1, S-3
- (D) P-4, Q-2, R-3, S-1

12. For the output F to be 1 in the logic circuit shown, the input combination should be

(A) A = 1, B= 1. C = 0 (C) A = 0, B= 1. C = 0

- (B) A = 1, B = 0, C = 0(D) A = 0, B = 0, C = 1
- 13. In the circuit shown, the device connected to Y5 can have address in the range

- (A) 2000 20FF
- (B) 2D00 2DFF
- (C)
- (D)
 - FD00 FDFF
- 14. Consider the z-transform $X(z) = 5z^2 + 4z^{-1} + 3$; $0 < |z| < \infty$. The inverse z transform x[n] is
 - (A) $5\delta[n + 2] + 3\delta[n] + 4\delta[n 1]$
- (B) $5\delta [n-2] + 3\delta [n] + 4\delta [n+1]$

2E00 - 2EFF

- (C) 5 u[n + 2] + 3 u[n] + 4 u[n 1]
- (D) 5 u[n 2] + 3 u[n] + 4 u[n + 1]
- 15. Two discrete time systems with impulse responses $h_1[n] = \delta [n-1]$ and $h_2[n] = \delta [n-2]$ are connected in cascade. The overall impulse response of the cascaded system is
 - (A) $\delta [n-1] + \delta [n-2]$

(B) $\delta [n - 4]$

(C) $\delta [n - 3]$

- (D) $\delta [n-1] \delta [n-2]$
- 16. For an N-point FFT algorithm with $N = 2^m$ which one of the following statements is TRUE?
 - (A) It is not possible to construct a signal flow graph with both input and output in normal order
 - (B) The number of butterflies in the mth stage is N/m
 - (C) In-place computation requires storage of only 2N node data
 - (D) Computation of a butterfly requires only one complex multiplication

17. The transfer function Y(s)/R(s) of the system shown is

(A) 0

www.questionpapers.net.in.

- (B) $\frac{1}{s+1}$
- (C) $\frac{2}{s+1}$
- (D) $\frac{2}{s+3}$

8. A system with transfer function $\frac{Y(s)}{X(s)} = \frac{s}{s+p}$ has an output $y(t) = \cos\left(2t - \frac{\pi}{3}\right)$ for the input signal

 $x(t) = p \cos\left(2t - \frac{\pi}{2}\right)$. Then, the system parameter 'p' is

- (A) $\sqrt{3}$
- (B) $\frac{2}{\sqrt{3}}$
- (C) 1
- (D) $\frac{\sqrt{3}}{2}$

19. For the asymptotic Bode magnitude plot shown below, the system transfer function can be

- (A) $\frac{10s+1}{0.1s+1}$
- (B) $\frac{100s + 1}{0.1s + 1}$
- (C) $\frac{100s}{10s + 1}$
- (D) $\frac{0.1s + 1}{10s + 1}$

20. Suppose that the modulating signal is $m(t) = 2\cos{(2\pi\,f_m t)}$ and the carrier signal is $x_C(t) = A_C \cos{(2\pi f_c t)}$, which one of the following is a conventional AM signal without over-modulation?

- (A) $x(t) = A_c m(t) \cos(2\pi f_c t)$
- (B) $x(t) = A_c[1 + m(t)]\cos(2\pi f_c t)$
- (C) $x(t) = A_c \cos(2\pi f_c t) + \frac{A_c}{4} m(t) \cos(2\pi f_c t)$
- (D) $x(t) = A_c \cos(2\pi f_m t) \cos(2\pi f_c t) + A_c \sin(2\pi f_m t) \sin(2\pi f_c t)$

- 21. Consider an angle modulated signal $x(t) = 6\cos[2\pi x 10^6 t + 2\sin(8000\pi t) + 4\cos(8000pt)]$ V. The average power of x(t) is.
 - (A) 10W
- (B) 18W
- (C) 20W
- (D) 28W
- 22. If the scattering matrix [S] of a two port network is[S] = $\begin{bmatrix} 0.2 \angle 0^0 & 0.9 \angle 90^0 \\ 0.9 \angle 90^0 & 0.1 \angle 90^0 \end{bmatrix}$ then the network is
 - (A) lossless and reciprocal
- (B) lossless but not reciprocal
- (C) not lossless but reciprocal
- (D) neither lossless nor reciprocal
- 23. A transmission line has a characteristic impedance of 50 Ω and a resistance of 0.1 Ω /m. if the line is distortion less, the attenuation constant (in Np/m) is
 - (A) 50
- (B)
- (C) 0.014
- (D) 0.002
- 24. Consider the pulse shape s(t) as shown. The impulse response h(t) of the filter matched to this pulse is

(A)

(B)

(C)

(D)

- 25. The electric field component of a time harmonic plane EM wave traveling in a nonmagnetic lossless dielectric medium has an amplitude of 1 V/m. If the relative permittivity of the medium is 4, the magnitude of the time-average power density vector (in W/m²) is
 - (A) $\frac{1}{30\pi}$
- (B) $\frac{1}{60\pi}$
- (C) $\frac{1}{120\pi}$
- (D) $\frac{1}{240\pi}$

Q. No. 26 - 51 Carry Two Marks Each

- If $e^y = X^{\overline{x}}$ then y has a
 - maximum at x = e

(B) minimum at x = e

maximum at $x = e^{-1}$

- minimum at $x = e^{-1}$ (D)
- A fair coin is tossed independently four times. The probability of the event "the number of time heads shown up is more than the number of times tails shown up" is
- (B)
- (D)
- If $\vec{A} = xy \ \hat{a}_x + x^2 \hat{a}_y$ then $\oint \vec{A} \cdot d\vec{l}$ over the path shown in the figure is

- (A)
- (B)
- (C)
- (D)
- The residues of a complex function $X(z) = \frac{1-12z}{z(z-1)(z-2)}$ at its poles are 29.
 - (A) $\frac{1}{2}$, $-\frac{1}{2}$ and 1

(B) $\frac{1}{2}$, $-\frac{1}{2}$ and -1

(C) $\frac{1}{2}$, -1 and $-\frac{3}{2}$

- (D) $\frac{1}{2}$, -1 and $\frac{3}{2}$
- Consider differential equation $\frac{dy(x)}{dx} y(x) = x$ with the initial condition y(0) = 0. Using Euler's first order method with a step size of 0.1, the value of y(0.3) is (A) 0.01 (B) 0.031 (C) 0.0631 (D) 0.1 Given $f(t) = L^{-1} \left[\frac{3s+1}{s3+4s2+(K-3)s} \right]$ if $f_{x\to\infty}^{lim}(ft) = 1$, then the value of K is (A) 1 (B) 2 (C) 3 (D) 4 30.

- 31.

32. In the circuit shown, the switch S is open for a long time and is closed at t=0. The current i(t) for t≥0⁺ is

- $i(t)=0.5-0.125e^{-1000t}$ A (A) $i(t)=0.5-0.5e^{-1000t}$ A (C)
- (B) (D)
- 33. The current I in the circuit shown is

34. In the circuit shown, the power supplied by the voltage source is

- In a uniformly doped BJT, assume that N_E, N_B and N_C are the emitter, base and collector dopings in 35. atoms/cm3, respectively. If the emitter injection efficiency of the BJT is close unity, which one of the following conditions is TRUE?
 - (A) $N_E = N_B = N_C$

 $N_{\text{E}} >> N_{\text{B}}$ and $N_{\text{B}} > N_{\text{C}}$ $N_{\text{E}} < N_{\text{B}} < N_{\text{C}}$ (B)

(C) $N_E = N_B$ and $N_B < N_C$

- (D)
- Compared to a p-n junction with NA=ND=10¹⁴/cm³, which one of the following statements is TRUE 36. for a p-n junction with $N_A = N_D = 10^{20} / \text{cm}^3$?
 - Reverse breakdown voltage is lower and depletion capacitance is lower (A)
 - Reverse breakdown voltage is higher and depletion capacitance is lower (B)
 - Reverse breakdown voltage is lower and depletion capacitance is higher (C)
 - (D) Reverse breakdown voltage is higher and depletion capacitance is higher

100W

37. Assuming that flip-flops are in reset condition initially, the count sequence observed at QA in the circuit shown is

(A) 0010111...

38.

- (B) 0001011...
- (C) 0101111...
- (D) 0110100...

The transfer characteristic for the precision rectifier circuit shown below is (assume ideal OP-AMP and practical diodes)

(A)

(C)

5 ?1

0

- 10 - 5

?0

39. The Boolean function realized by the logic circuit shown is

- (A) $F = \Sigma m(0,1,3,5,9,10,14)$
- (B) $F = \Sigma m(2,3,5,7,8,12,13)$
- (C) $F = \Sigma m(1,2,4,5,11,14,15)$
- (D) $F = \Sigma m(2,3,5,7,8,9,12)$
- For the 8085 assembly language program given below, the content of the accumulator after the execution of the program is

3000	MVI	Α,	45H
3002	MOV	В,	Α
3003	STC		
3004	CMC		
3005	RAR		
3006	XRA	В	

- (A) 00H
- (B) 45H
- (C) 67H
- (D) E7H

41. A continuous time LTI system is described by

$$\frac{d^{2}y(t)}{dt^{2}}+4\frac{dy(t)}{dt}3y(t)=2\frac{dx(t)}{dt}+4x(t)$$

Assuming zero initial conditions, the response y(t) of the above system for the input $x(t)=e^{-2t}$ u(t) is given by

 $(e^t-e^{3t})u(t)$ (A)

 $(e^{-t}-3^{-3t})u(t)$ $(e^t+e^{3t})u(t)$

 $(e^{-t}+e^{-3t})u(t)$ (C)

- 42. The transfer function of a discrete time LTI system is given by

H(z) =
$$\frac{2 - \frac{3}{4}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$

Consider the following statements:

S1: The system is stable and causal for ROC: $|z| > \frac{1}{2}$

S2: The system is stable but not causal for ROC:|z|<1/4

S3: The system is neither stable nor causal for ROC: $\frac{1}{4} < |z| < \frac{1}{2}$

Which one of the following statements is valid?

- Both S1 and S2 are true (A)
- (B) Both S2 and S3 are true
- (C)Both S1 and S3 are true
- (D) S1, S2 and S3 are all true
- $\frac{\sin(500\pi t)}{\sin(700)\pi t}$ The Nyquist sampling rate for the signal s(t) =is given by 43. πt
 - (A) 400 Hz
- (B) 600 Hz
- (C) 1200Hz
- (D) 1400 Hz

44. A unity negative feedback closed loop system has a plant with the transfer

function $G(s) = \frac{1}{s^2 + 2s + 2}$ and a controller $G_c(S)$ in the feed forward path. For a unit set input, the

transfer function of the controller that gives minimum steady state error is

 $G_c(s) = \frac{s+1}{s+2}$ (A)

- $G_c(s) = \frac{s+2}{s+1}$
- $G_c(s) = \frac{(s+1)(s+4)}{(s+2)(s+3)}$ (C)
- (D) $G_c(s) = 1 + \frac{2}{s} + 3s$
- http://www.questionpapers.net.in X(t) is a stationary process with the power spectral density $S_{x}(f)>0$ for all f. The process is passed through a system shown below.

Let $S_v(f)$ be the power spectral density of Y(t). Which one of the following statements is correct?

- $S_v(f)>0$ for all f
- (B) $S_v(f)=0$ for |f|>1kHz
- (C) $S_v(f)=0$ for $f=nf_0$, $f_0=2kHz$, n any integer
- (D) $S_v(f)=0$ for $f=(2n+1)f_0=1$ kHz, n any integer
- A plane wave having the electric field component $\vec{E}_i = 24\cos(3\times10^8 t \beta y)\hat{a}_z V/M$ and traveling in 46. free space is incident normally on a lossless medium with m= m₀ and e=9e0 which occupies the region y≥0. The reflected magnetic field component is given by
 - $\frac{1}{10\pi}\cos(3\times10^8 t + y)\hat{a}_x A/M$ (A)
- $\frac{1}{20\pi}\cos(3\times10^8 t + y)\hat{a}_x A/M$
- (C)
 - $-\frac{1}{20\pi}\cos(3\times10^8\,t+y)\hat{a}_x \ \text{A/M} \qquad \qquad \text{(D)} \qquad -\frac{1}{10\pi}\cos(3\times10^8\,t+y)\hat{a}_x \ \text{A/M}$
- 47. In the circuit shown, all the transmission line sections are lossless. The Voltage Standing Wave Ration (VSWR) on the 60W line is

- (A) 1.00
- (B) 1.64
- (C) 2.50
- (D)

Common Data Questions: 48 & 49

Consider the common emitter amplifier shown below with the following circuit parameters: b=100, g_m =0.3861 A/V, r_0 = ∞ , r_p =259 W, R_S =1k W, R_B =93K W, R_C =250 W, R_L =1k W, C_1 = ∞ and C_2 =4.7mF.

48.

The resistance seen by the source Vs is

- (A) 258 Ω
- (B) 1258 Ω
- (C) 93 KΩ
- (D) ∞

49. The lower cut-off frequency due to C2 is

- (A) 33.9 Hz
- (B) 27.1 Hz
- (C) 13.6 Hz
- (D) 16.9 Hz

Common Data Questions: 50 & 51

The signal flow graph of a system is shown below.

- 50. The state variable representation of the system can be
 - (A) $x = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} t$ $Y = \begin{bmatrix} 0 & 0.5 \end{bmatrix} x$
 - (B) $x = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$ $y \begin{bmatrix} 0 & 0.5 \end{bmatrix} x$
 - (C) $x = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$ $y [0.5 \ 0.5] x$
 - (D) $x = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$ $y [0.5 \ 0.5] x$

51. The transfer function of the system is

(A) $\frac{s+}{s^2}$

ttp://www.questionpapers.net.in

- (B) $\frac{s-1}{s^2+1}$
- (C) $\frac{s+1}{s^2+s+1}$
- (D) $\frac{s-1}{s^2+s+1}$

Linked Answer Questions: Q.52 to Q.55 Carry Two Marks Each

Statement for Linked Answer Questions: 52 & 53

The silicon sample with unit cross-sectional area shown below is in thermal equilibrium. The following information is given: T=300K, electronic charge= 1.6×10^{-19} C, thermal voltage=26 mV and electron mobility = $1350 \text{cm}^2/\text{V-s}$

- 52. The magnitude of the electric field at $x=0.5 \mu m$ is
 - (A) 1kV/cm
- (B) 5kV/cm
- (C) 10 kV/cm
- (D) 26kV/cm
- 53. The magnitude of the electron drift current density at $x=0.5 \mu m$ is
 - (A) $2.16x10^4$ A/cm²

(B) $1.08 \times 10^4 \text{ A/cm}^2$

(C) $4.32 \times 10^3 \text{ A/cm}^2$

(D) $6.48 \times 10^2 \text{ A/cm}^2$

Statement for Linked Answer Questions: 54 & 55

Consider a baseband binary PAM receiver shown below. The additive channel noise n(t) is whit with power spectral density $S_N(f) = N_0/2 = 10^{-20}$ W/Hz. The low-pass filter is ideal with unity gain and cutoff frequency 1MHz. Let Y_k represent the random variable $y(t_k)$.

 $Y_k = N_k$ if transmitted bit $b_k = 0$

 $Y_k=a+N_k$ if transmitted bit $b_k=1$

Where N_k represents the noise sample value. The noise sample has a probability density function, $P_{Nk}(n)=0.5\alpha e^{-\alpha|n|}$ (This has mean zero and variance $2/\alpha^2$). Assume transmitted bits to be equiprobable and threshold z is set to $a/2=10^{-6}V$.

- 54. The value of the parameter a (in V^{-1}) is
 - (A) 10^{10}
- (B) 10^7
- (C) 1.414x10⁻¹⁰
- (D) 2x10⁻²⁰

GATE question papers: Electronics and Communication Engineering 2010 (EC)

Download more GATE question papers and read GATE articles at: http://www.questionpapers.net.in/gate-question-papers-download.html

55.	The pr (A)	obability of bit e 0.5xe ^{-3.5}	rror is (B)	0.5xe ⁻⁵	(C) 0.5	ixe ⁻⁷	(D)	0.5xe ⁻¹⁰		
in/			Q. No.	. 56 – 60 Carry	One M	ark Each				
s. net.in	Which (A)	of the following Cyclic	options (B)	is the closest in indirect	meaning (C)	to the world be confusing	low: Circ (D)	cuitous crooked		
onpapers.				a pair of related sses the relation			nployed: per	ır pairs of words. Worker		
duestie.								e following senter et for our children conserve		
59.				ord from the op olitics h belied				e following senter subject. conserve	nce:	
60.				f them play hock number of perso 17				10 of them play botball is:	oth	
				Q. No. 61 – 6	5 Carry	Two Marks Ea	ch			
61.	Chemic exist p	cal agents that d eople in military of the following Modern warfar Chemical agen Use of chemica	lo their v establisl stateme e has re ts are us al agents	vork silently app	ear to be lk that ch the me ife. warfare. ld be und	e suited to such nemical agents a aning of the about	warfare; re usefu ve passa	of civilian populati and regretfully, to I tools for their ca age:	here	
62.	If 137- (A)	+276=435 how r 534	much is (B)	731+672? 1403	(C)	1623	(D)	1513		
63.	unskille	ed workers can b	ouild a w		a team			vall in 25days; 10 ed and 5 unskilled 15 days	s.net.in/	
64.	Given (A)	digits 2,2,3,3,3,4 50	I,4,4,4 h (B)	ow many distinc	t 4 digit (C)	numbers greate 52	than 30 (D)	000 can be formed 54	abers	
65.	Januar	y. The age differ an3 years. Given Hair's age + Gi The age differe Saira is not the There are not t	rence be the folloita's age ence bet younge twins.	tween any two sowing facts: > Irfan's age + ween Gita and S	Successiv Saira's a aira is 1	e siblings (that i age.	s born o	All were born on 1 ne after another) ot the oldest and IHSG		
End of Question Papers										