DECEMBER 2006

Code: A-04

Subject: MATERIALS AND PROCESSES

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Ouestions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or be	est alternative in the
	following:	(2x10)

- a. The correct order of the coordination number is SC, BCC, FCC and HCP unit cells is
 - **(A)** 12, 8, 12, 6.

(B) 6, 8, 12, 12.

(C) 8, 6, 12, 12.

(D) 6, 12, 12, 8.

- b. Frankel and Schottky imperfections are
 - (A) dislocations in ionic crystals.
 - **(B)** grain boundaries in covalent crystals.
 - (C) vacancies in ionic crystals.
 - (**D**) vacancies in covalent crystals.
- c. The electronic polarizability α_e of a mono atomic gas atom is

(A) ^{4π∈0}

(C) $4\pi \in_0 \mathbb{R}^3$

(B) $4\pi \epsilon_0 R$ (D) $4\pi \epsilon_0 R^2$

- d. The forbidden energy gap of carbon in diamond structure is
 - **(A)** 0.7 ev

(B) 1.0 ev

(**C**) 0.01 ev

(**D**) none

e. Fo	r silicon doped with trivalent in	npurit	y,
(A)	$n_e >> n_h$. $n_h >> n_e$.	(B)	$n_e > n_h$. $n_h > n_e$.
(C)	$n_h >> n_e$.	(D)	$n_h > n_e$.
f. W	ith increase in temperature, the	orien	tation polarization in general
` /	decreases. remains same.	, ,	increases. o) none of these.
g. A	suitable material for audio and	ΓV tr	ansformers is
` /	Fe – 4% Si . Fe – 30% Ni.	` '	Ferrite.) Pure Fe.
	Which of the following is not rication	the	function of oxide layer during Io
(B) (C)	to increase the melting point of to mask against diffusion or io to insulate the surface electricate to produce a chemically stable	n imp ally.	plant.
i. In	i. In normalizing, one of the following is not correct:		
	it relieves internal stresses the rate of cooling is rapid.		(B) it produces a uniform structure. (D) the rate of cooling is slow.
j. W	hich of the following materials	is use	ed for making permanent magnet.
	Platinum cobalt Carbon Steel		B) Alnico V) all the three

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** of What the distinguishing characteristics metallic are a. bonding? Discuss "cohesive energy" "electron and affinity". (4+4)
 - b. What do you understand by Miller indices of a crystal plane? Show that in a cubic crystal the spacing between two consecutive parallel

planes of Miller indices (hk ℓ) is given by $\frac{d_{hk\ell} = \frac{a}{\sqrt{h^2 + k^2 + \ell^2}}}{(3+5)}$

- Q.3 a. What are the point, line and surface imperfections found in solid materials? Illustrate these imperfections with suitable sketches. (9+3)
 - b. What is the purpose of zone refining? In a binary phase diagram (pressure omitted), what is the maximum number of phases that can coexist for at least one degree of freedom? (2+2)
- Q.4 a. State first and second Fick's law of diffusion and show how it applies to diffusion which takes place in a solid solution. What other factors influence the rate of such diffusion?
 (8)
 - b. What do you understand by "non-degenerate" and "degenerate" states? Evaluate the temperature at which there is one percent probability that a state, with an energy 0.5 electron volt above the Fermi energy, will be occupied by an electron. (8)
- Q.5 a. Indicate on an energy level diagram the conduction and valence bands, donor & acceptor states and the position of fermi level for
 - (i) an intrinsic semiconductor.
 - (ii) a n-type semiconductor.
 - (iii) a p-type semiconductor. (6)
 - b. What is Hall effect? Briefly discuss the physical origin and uses of Hall effect? (2+5)
 - c. Show that the probability of occupancy of energy level E by an electron is 50% for $E = E_F$ at temperature $(T \neq 0K)$. (3)

Q.6	a. Explain the following: (i) dielectric loss (ii) dielectric break down (iii) local electric field (iv) polarizability. (2 ½ × 4)
	b. The electrical resistivity of pure silicon is 2300 Ω at room temperature of 27°C, what will be its resistivity at 200° C. (Take energy gap = 1.1 eV, K = 8.62×10^{-5} eV/K. (6)
Q.7	 a. Distinguish soft magnetic material from hard magnetic material in respect of hysteresis losses, eddy current losses & domain wall motion with suitable examples and plots.
	b. What are ferrites and ferrox cubes? How are mixed ferrites prepared for industrial uses? Give an account of the applications of ferrites pointing out their advantages over a ferromagnetic material. (8)
Q.8	a. What are the objectives of annealing? Discuss the different annealing processes? Is spheroidising different from annealing Explain. (3+3+2)
	b. Distinguish with suitable examples & diagrams the following:
	(i) Rolling and Forging. (ii) Extrusion and Wire drawing. (4+4)
Q.9	Describe briefly the following fabrication processes: (i) Metallization. (ii) Photolithography. (iii) Single crystal growth. (iv) Casting. 4 × 4)