upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

R 272

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2005.

Second Semester

Electronics and Communication Engineering

PH 1154 — PHYSICS – II (Regulations 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Find the expression for the electric field in a region whose potential is given by V = -kxy; where k is a constant.
- 2. Define the terms "mobility" and "relaxation time" of free electrons in a metal.
- 3. What is meant by Hall effect? Write an expression for Hall coefficient.
- 4. Distinguish between fluorescence and phosphorescence.
- 5. What do you understand by the terms "critical temperature" and "Critical field" of a superconductor?
- 6. What is the difference between direct gap and indirect gap semiconductors?
- 7. Distinguish between soft and hard magnets.
- 8. Mention four types of polarization mechanisms that can take place in the presence of an electric field in dielectric materials.
- Mention some important applications of ferrites.
- 10. What are the main drawbacks of classical free electron theory of metals?

PART B \rightarrow (5 × 16 = 80 marks)

- 11. (i) Obtain an expression for the electrical conductivity of a metal on the basis of classical free electron theory. (8)
 - (ii) Explain the meaning of 'Density of states'. Derive an expression for the number of allowed states per unit volume of a solid. (8)

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

- 12. (a) (i) Describe the effect of perpendicular electric field on the motion of charged particles. Derive the appropriate formula for linear (8)
 - (ii) An electron accelerated by p.d. of 1000 volts enters at right angles into a uniform magnetic field induction 1.19 × 10-3 Wb/m². Find (1) the radius of the electron trajectory in the magnetic field and (2) the angular momentum of the electron (mass of electron = 9.1 × 10-31 kg; charge = -1.6 × 10-19 C).
 - (iii) An electron is accelerated through a p.d. of 150 cm. This electron is injected into a transverse electric field through application of 20 volt to a pair of parallel plates of 1 cm and 1 cm apart. A screen is placed at 50 cm away from 1 center of the applied electric field. Calculate (1) velocity of electric in the field and (ii) deflection on the screen.

Or

- (b) (i) Describe the energy band theory of solids with the help of next hand diagrams. Distinguish between metals, insulators and semiconductors on the basis of band theory.
 - (ii) Calculate the mobility of electrons in copper assuming that **each** atom contributes one free electron for conduction. Given resistivity of copper is 1.7×10^{-8} ohm m, at wt. 63.54, density = 8.9×10^3 kg/m³ and Avogadro number = 6.025×10^{23} /gmol. (4)
 - (iii) Calculate the concentration of free electrons per unit volume of silver. The Fumi energy of its free electrons is 5.5 eV. (Given value of Planck's const, $h=6.63\times10^{-34}$ Js, mass of electron = 9.11×10^{-31} kg).
- 13. (a) (i) Derive an expression for the electrical conductivity of an intrinsic semiconductor.
 - (ii) The electron mobility and hole mobility in silicon are 0.17 m²/V.s and 0.035 m²/V.s respectively at room temperature. If the carrier concentration is 1.1×10^{16} m⁻³, calculate the resistivity of silicon at room temperature.
 - (iii) In an intrinsic semiconductor, the energy gap is 1.2 eV. What is the ratio between its conductivity at 600 K and that of 300 K? (Given: $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$).

Or

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

(b)	(i)	What is Hall effect? Derive an expression for the charge density:	in
		terms of Hall voltage and further explain how the mobility of the	he
		charge carriers can be evaluated by knowing the conductivity. ((8)

- (ii) A sample of silicon doped with 10^{16} phoshorons atoms/cm³. Find the Hall voltage in a sample with thickness = 500 μ m, Area at cross section = 2.5×10^{-3} cm⁻², current = 1 A and magnetic field (B_z) = 10 Wb/cm².
- (iii) Distinguish between Type I and Type II superconductors in the form of a neat table. (4)
- 14. (a) (i) Derive an expression for the internal field in a dielectric solids material. (8)
 - (ii) The dielectric constant of a helium gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7×10^{25} atoms/m³. (4)
 - (iii) Calculate the polarization produced in a dielectric medium of dielectric constant 6 when it is subjected to an electric field of 100 V/m. (4)

Or

- (b) (i) What is ferroelectricity? Explain the hysteresis curve exhibited by a ferroelectric material with a suitable sketch. Give examples for ferroelectric materials. (8)
 - (ii) Calculate the relative dielectric constant of a barium titanate crystal, which, when inserted in a parallel plate capacitor of area 10 mm \times 10 mm and distance of separation of 2 mm, gives a capacitance of 10^{-9} F. $\left(\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}\right)$. (4)
 - (iii) Write a short notes on liquid crystal displays. (4)
- 15. (a) (i) Give the classification of magnetic materials on the basis of magnetic susceptibility. Briefly discuss the domain theory of ferromagnetism.
 (8)
 - (ii) The magnetic material is subjected to a magnetic field of strength 500 A/m. If the magnetic susceptibility of the material is 1.2, calculate the magnetic flux density inside the material $\left(\mu_0 = 4\pi \times 10^{-7} \text{ H/m}\right)$.
 - (iii) Calculate the energy loss per hour in the iron core of a transformer, if the area of B–H loop is 250 J/m³ and the frequency of alternating current is 50 Hz. The density of iron is 7.5 × 10³ kg/m³ and mass of the core is 10 kg.

Or

3

R 272