Problem Set-1 (Organic Chemistry)

For B.Sc. I & IInd Year Students

Section A

(Multiple-choice question: $2 \times 45 = 90$ marks)

Q.1: Which one of the following pairs represents a set of electrophiles?

(b) $\overset{\text{(+)}}{H}$ and H_2O

(c) BF₃ and NH₃

(d) $\overset{\bigcirc}{H}$ and $AlCl_3$

Q.2: Which of the following will show aromatic character?

II

Ш

(a) II, III and V

(b) II and V

(c) II, III, IV and V

(d) I, II, IV and V

Q.3: Among the following given intermediate, the decreasing order of their stability is

CICH₃ČH₂

⊕ CH₃CHCH₃

CH₂=CHCH₂

I

II

III

IV

(a) V > IV > III > II > I

(b) IV > V > III > II > I

(c) V > IV > III > I > II

(d) IV > V > III > I > II

Q.4: Which one of the following species is isoelectronic with NH₃?

(a) CH_3^{\bullet} (b) ${}^{\bullet}_{\bullet}CH_2$ (c) $CH_3 \bigcirc$ (d) $CH_3 \oplus$

Q.5. In the conversion of a Grignard reagent into an aldehyde, the other components used are

(1) HCOOC₂H₅

(2) CH₃COOC₂H₅

(3) CO₂

(4) HCN

Codes:

(a) 1, 3 and 4

(b) 1 and 4

(c) 1 and 2

(d) 2 and 4

Q. 6: An optically active alcohol (**A**) reacts with SOCl₂ to form product (**B**) as shown:

$$C_2H_5$$
 C_2H_5
 C_2H_5
 C_3
 C_2H_5
 C_3
 C_3
 C_4
 C_5
 C_5
 C_7
 C_7

In this regard, which one of the following statements is true?

- (a) A and B are both R-isomer.
- (b) A and B are both S-isomer.
- (c) A is *R*-isomer and B is *S*-isomer
- (d) A is S -isomer and B is R -isomer

Q.7: The following structures, Represents a pair of

(a) Enantiomers

(b) Diastereomers

(c) Meso compounds

(d) One and the same compound

Q.8: Match List I with List II and select the correct answer using the codes given below the lists:

List I List II

A. α-D-Glucose & β- D-Glucose B. D-Glucose & D-Mannose

1. Enantiomers

C. Erythrose & threose

- 2. Anomers
- 3. Epimers
- D. D (+) Gleceraldehyde & L-(-) Gleceraldehyde
- 4. Diastereomers

Codes:

	A	В	C	D
(a)	3	2	1	4
(b)	2	3	4	1
(c)	3	2	4	1
(d)	2	3	1	4

Q.9: The structural representation of Tartaric acid as shown has

(a) a plane of symmetry

- (b) a center of symmetry
- (c) Both plane and point of symmetry
- (d) Neither plane nor point of symmetry
- **Q. 10:** Which one of the following is a *Z*-isomer?

Q. 11: Which one of the following has 1*E*, 3*Z*-configuration?

$$(a) \begin{array}{c} H \\ H \\ Br \end{array} \begin{array}{c} H \\ CH_3 \end{array} \begin{array}{c} H$$

Q.12: In the conversion of Benzene into tert-butyl benzene, the reagent used are:

$$(1)$$
 $(CH3)3C-Cl + AlCl3$

 $(2) (CH_3)_2 CH\text{-}CH_2\text{-}Cl + AlCl_3$

 $(4) (CH_3)_2C=CH_2 + HC1$

Codes:

(a) 1 only

(b) 1,3 and 4

(c) 1, 2 and 3

(d) All of the above

Q. 13: A tribromobenzene (A) forms three mononitro tribromobenzenes. The structure of 'A' is

(b) Br Br

(d) None of the above.

List I

- Q. 14: Phenol can be converted into Salicyclic acid using
 - (a) CO₂ and alkali under pressure
- (b) CCl₄ in alkali

List II

- (c) CHCl₃ in alkali followed by oxidation
- (d) All of the above

Q.15: Match List I with List II and select the correct answer using the codes given below:

A. (A. Grignard reaction			1. Zn		
B. V	B. Wilkinson Catalyst			2. Mg		
C. Reformatsky reaction				3. $PPh_3=CH_2$		
D. V	D. Wittig reaction			4. Rh		
Cod	es:					
		A	В	C	D	
(2	a)	1	2	3	4	
(t	o)	2	3	4	1	
(0	c)	2	4	1	3	
(0	d)	2	3	1	4	

Q. 16: Which of the following compounds will undergo slowest nucleophilic substitution?

- **Q.17:** When C₆H₅CH₂Cl is treated with ethanolic KCN, large amount of C₆H₅CH₂OC₂H₅ is produced along with C₆H₅CH₂CN. Therefore, the most likely mechanism for this reaction will be
 - (a) S_N2 Mechanism

(b S_Ni Mechanism

(c) S_N1 Mechanism

- (d) Both S_N1 and S_N2 Mechanism
- **Q.18:** The mechanism of formation of $C_6H_5NH_2$ by the action of $NaNH_2$ -liq NH_3 on C_6H_5Cl is an example of
 - (a) Nucleophilic substitution
- (b Electrophilic substitution
- (c) Addition followed by elimination
- (d) Elimination followed by addition
- **Q.19:** Which one of the following compounds does not form alcohol on treatment with aq. KOH:
 - (a) I-chloroethene

(b) 1-chloropropane

(c) 2-chloropropane

- (d) 2,2-dimethyl-1-chloropropane
- **Q.20:** An aromatic compound 'A' C₇H₆Cl₂, gives AgCl on boiling with alcoholic AgNO₃ solⁿ and yields C₇H₇OCl on treatment with NaOH. 'A' on oxidation gives a monochlorobenzoic acid, which affords only one mononitro derivative. The compound 'A' is

$$(a) \begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$$

Q.21: Among the following given compounds

$$(I) \qquad (II) \qquad (III) \qquad (IIV)$$

The decreasing order of their acidity is:

(a) I > II > III > IV

(b) II > I > IV > III

(c) III > IV > I > II

- (d) IV > III > II > I
- **Q.22:** A hydrocarbon (C_7H_{12}), on catalytic hydrogenation over platinum gives C_7H_{16} . The parent hydrocarbon adds Br_2 and also reacts with $[Ag(NH_3)_2]OH$ to give a precipitate. The parent hydrocarbon is

Q.23: Among the following given compounds

The decreasing order of their acidity is:

(a) I > II > III > IV

(b) II > I > IV > III

(c) III > IV > I > II

(d) IV > III > II > I

Q.24: Among the following given compounds

The increasing order of their acidity is:

(a) I < II < III < IV < V

(b) V < IV < III < II < I

(c) IV < III < II < I < V

(d) V < III < IV < I < II

Q.25: Among the following given compounds

COOH COOH COOH COOH
$$CH_3$$
 H_3C $C(CH_3)_3$ III III IIV

The decreasing order of their acidity is:

(a) I > II > III > IV

(b) IV > III > II > I

(c) III > I > II > IV

(d) II > I > III > IV

Q.26: Among the following given compounds

The decreasing order of their acidity is:

(a) I > II > III > IV

(b) II > IV > III > I

(c) IV > III > II > I

(d) II > III > IV > I

Q.27: Among the following given compounds,

$$I$$
 II III IV V

The decreasing order of their acidity is:

- (a) IV > V > I > III > II
- (c) V > IV > I > II > III

- (b) IV > V > I > II > III
- (d) V > IV > I > III > II

Q.28: Among the following given compounds,

The decreasing order of their acidity is:

- (a) I > II > III > IV
- (c) IV > II > III > I

- (b) 1 > III > II > IV
- (d) 1V > II > I > III

Q.29: Among the following given compounds,

OH OH CH₃ CH₃ IV

The decreasing order of their acidity is:

- (a) I > II > III > IV
- (c) I > III > IV > II

- (b) I > III > II > IV
- (d) II > I > III > IV

Q.30: Among the following given compounds,

The decreasing order of their acidity is:

(a) II > III > IV > I

(b) I > IV > II > III

(c) IV > II > III > I

(d) II > IV > III > I

Q.31: Among the following given compounds

The decreasing order of their basicity is:

(a) I > IV > III > II

(b) I > III > IV > II

(c) II > IV > III > I

(d) I > II > III > IV

Q.32: Which one of the following compounds is the most basic in aqueous medium?

(a)
$$H_3C$$
 NH₂ (b) H_3C NH₂ (c) H_3C NH₂ (d) H_3C CH₂

Q.33: In the following reaction,

The product A will be

(a)
$$O_2N$$
 O_2N O_2

Q.34: Among the following given compounds

The decreasing order of their basicity is:

(a)
$$I > II > III > IV$$

(b)
$$II > III > IV > I$$

(c)
$$II > IV > III > I$$

(d)
$$IV > III > I > II$$

Q.35: Among the following given compounds,

The decreasing order of their basicity is:

(a) I > II > III > IV

(b) II > I > III > IV

(c) III > I > II > IV

(d) IV > I > III > II

Q.36: Which one of the following compounds will react with two moles of CH₃MgBr?

(a) CH₃COOH

(b) $H_3C-C \equiv C-CH_3$

(c) H₃C-CH₂CH₂OH

(d) $HC \equiv C - CH_2OH$

Q.37: Match List I with List II and select the correct answer using the codes given below

List I

- A. Diastereomers
- B. Meso compound
- C. Conformers
- D. Racemic mixture
- E. Enantiomers

List II

- 1. Internal componsation
- 2. External compensation
- 3. Different reaction under chiral medium
- 4. Results by the free rotation about C-C bond
- 5. Cis –Trans isomerism

Codes:

(a)	A 5	B 2	C 4	D 1	E 3
(b)	3	1	4	2	5
(c)	3	2	5	5	4
(d)	5	1	4	2	3

Q.38: Match List I with List II and select the correct answer using the codes given below

List I List II A. Bayer villiger oxidation I₂/NaOH B. Haloform reaction 2. C. Reformatsky reaction H_2O_2 D. Hoffman rearrangement NaOH Br₂/NaOH E. Perkin reaction **Codes:** В \mathbf{C} E Α D 5 2 3 (a) 2 3 (b) 1 5 4 (c) 2 3 4 5 1 2 5 (d) 3 4 1

Q.39: An alcohol '**A'** on dehydration gives '**B'** which on ozonolysis gives acetone and formaldehyde. '**B'** decolorizes $KMnO_4$ solution but '**A'** does not. Hence '**A'** and '**B'** are respectively:

(a)
$$H_3C$$
 C C CH_2OH and C_2H_5 CH_2 (b) CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

(c)
$$H_3C$$
 CH_3 and $C=CH_2$ (d) H_3C $C=CH_2$ H_3C $C=CH_2$ H_3C $C=CH_2$

Q.40: Which of the following compounds can be obtained in an optically active form?

NO₂ COOH NO₂ COOH COOH COOH CH₃ HO HO H COOH NO₂ COOH NO₂ COOH
$$\frac{1}{1}$$
 COOH $\frac{1}{1}$ COOH $\frac{1}{1$

Select the correct answer using the codes given below:

Codes:

(a) B, C, D, E and G

(b) D, E and G

(c) D, E, F and G

(d) B, D, E and G

Q.41: The major product (A) formed in the following reaction is

$$\begin{array}{c|c}
\hline
O & \underline{\text{LiAlH}_4 \text{(Excess)}} \\
\hline
H_3O \oplus
\end{array}$$

Q.42: Consider the following reactions,

The reactions, which proceed through free radical mechanism, are

(a) 3 and 4

(b) 3, 4 and 5

(c) 2, 3, 4 and 5

(d) All of the above.

Q.43: The compound among the following, which can exhibit optical activity is:

Directions: The following two items consists of two statements: - Assertion (A) and Reason (R). You are to examine these two statements and choose the correct answer using the following

Codes:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true, But R is not the correct explanation of A.
- (c) A is true but R is false
- (d) A is false but R is true.
- **Q.44:** Assertion (A): Addition of Br₂ to 2-butene is a stereoselective reaction. Reason (R): Addition of Br₂ to 2-butene is an electrophilic and is a two-step process.
- **Q.45:** Assertion (A): Pyrrole is a relatively non-basic in nature. Reason (R): In Pyrrole, Nitrogen is sp³ hybridized.

Section B
$$(3 \times 10 = 30)$$

Q.1: Write down the product formed in the following organic reactions? $1x \ 10 = 10$

- Q.2: (a) Write and explain the most stable conformation of cis-4-tert-butyl cyclohexanol.
- 3

(b) Among the following cycloalkanes, which is more stable and why?

2

3

2

2

- (ii) H And H₃C CH
- (c) In the following reaction, which will be more stable product and why?

- (d) Among CH₃CH₃Cl and CH₃OCH₂Cl, which will solvolysed faster? Explain
- **Q3:** (a) Among maleic acid and fumaric acid which gives faster ionization and what about the second ionization?

(b) Among the *N*,*N*-dimethyl aniline (I) and *O*-methyl- *N*,*N*-dimethyl aniline (II), which is more basic and why?

$$H_3C$$
 N
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

(c) Give the appropriate reagents used for the following conversion.

$1 \times 6 = 6$

Answer Sheet (Section A)

Q. No	Ans (code)
Q: 1	
Q: 2	
Q: 3	
Q: 4	
Q: 5	
Q: 6	
Q: 7	
Q: 8	
Q: 9	
Q: 10	
Q: 11	
Q: 12	
Q: 13	
Q: 14	
Q: 15	

Q. No	Ans (code)
Q: 16	
Q: 17	
Q: 18	
Q: 19	
Q: 20	
Q: 21	
Q: 22	
Q: 23	
Q: 24	
Q: 25	
Q: 26	
Q: 27	
Q: 28	
Q: 29	
Q: 30	

Q. No	Ans (code)
Q: 31	
Q: 32	
Q: 33	
Q: 34	
Q: 35	
Q: 36	
Q: 37	
Q: 38	
Q: 39	
Q: 40	
Q: 41	
Q: 42	
Q: 43	
Q: 44	
Q: 45	

For any clarifications, students are encourage to contact

Dr. Vinod Kumar Tiwari,

Lecturer in Organic Chemistry Department of Chemistry Faculty of Science Banaras Hindu University Varanasi-221005 Tel:091-9451896061 (M)

E-mail:tiwari_chem@yahoo.co.in