Code: A-27

Subject: DIGITAL HARDWARE DESIGN

December 2005

Time: 3 Hours

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

a. The threshold element shown in Fig. 1 realises the switching function

Fig.1

(A)
$$y = \sum (1, 2, 3, 6, 7)$$
.

(B)
$$y = \sum (4, 5, 7)$$
.

(C)
$$y = \sum (1, 2, 4, 5)$$
.

(D)
$$y = \sum (2,5,6,7)$$

- b. A pulse mode asynchronous circuit is having 2 levels of excitation logic with propagation delay of 5 ns each and a latch with delay of 10 ns. Minimum input pulse width required for the circuit is
 - (A) 5 ns

(B) 10 ns

(C) 15 ns

(D) 20 ns

- c. A mealy machine is
 - (A) level input pulse output machine.
 - (B) pulse input level output machine.
 - (C) pulse input pulse output machine.
 - **(D)** level input level output machine.
- d. In Moore machine, output is a function of

(A) present state and external inputs.

- **(B)** only present state.
- **(C)** only external inputs.
- **(D)** neither present state nor external inputs.
- e. Which of the following is a unate function
 - (A) x'z + x'y + w'z

(B) x'y + xy' + x'y'

(C) x'z + xz + yz'

- (D) xz + yz' + xy'
- f. Fig. 2 is block diagram of a multiplier that multiplies two-bit binary numbers. How many output variables (x) are needed for it

- **(A)** 2
- **(B)** 4
- **(C)** 6
- **(D)** 8
- g. The circuit shown in Fi

 (A) 2-bit up down cc
 (B) 4-bit up down cc
 (C) 4-bit ring counter
 (D) 4-bit Johnson coi
- h. Time t₁ and t₂ shown in Fig.4 respectively represent
 - (A) set up and hold time.
 - **(B)** hold and set up time.
 - (C) rise and fall time.
 - **(D)** fall and rise time.

Negative edge triggered clk

Canonical sum of pr

(A) pqs + pqs' + p

(C) pq's + pqs' + p

j. An n-bit Johnson co

(A) ⁿ/₂.

(B) 2 n. **(D)** n.

Fig. 4

(C) 4 n.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Derive a minimum-cost realisation of a four-variable function that is equal to 1 if exactly two or exactly three of its variables are equal to 1, otherwise it is equal to 0.

b. A circuit with two outputs has to implement the following functions:

$$f(x_1, x_2, x_3, x_4) = \sum_{m} m(0, 2, 4, 6, 7, 9) + d(10, 11)$$

$$g(x_1, x_2, x_3, x_4) = \sum_{m} m(2, 4, 9, 10, 15) + d(0, 13, 14)$$

Design a minimum-cost circuit to complement the above function. Compare its cost with combined costs of two circuits that implement the functions f and g separately. Assume that inputs are available in both uncomplemented and complemented form.

(10)

Q.3 a. The function $f(x_1, x_2, x_3, x_4, x_5) = \sum_{m \neq 1} m(4, 7, 8, 11, 13, 14, 23, 27, 28, 29, 30)$ can be decomposed to the form $F(\Phi(x_1, x_4, x_5), x_2, x_3)$. Determine the function F and Φ .

b. Design a single digit BCD adder using an EPROM. Determine the minimum size (mxn bits) of the EPROM. (10)

Q.4 a. Explain with the help of a suitable logic diagram the differences between a registered PAL and a GAL. (6)

b. Write a VHDL program for a 4×1 multiplexer. (4)

c. Write a VHDL program for a 4 bit shift register. (6)

Q.5 The output z of a fundamental, two-input sequential circuit changes from 0 to 1 only when x_2

changes from 0 to 1 while $x_1 = 1$. Further, the output changes from 1 to 0 only when x_1 changes from 1 to 0 while $x_2 = 0$.

(i) Find a minimum row reduced flow table.

(8)

- (ii) Show a valid assignment and write a set of hazard free excitation and output equations. (8)
- Q.6 a. Reduce the state table given below using equivalence class state reduction technique. (8)

Present State (PS)	Next State (NS)	Next State (NS), Output (Z)		
	x=0	x=1		
s ₀	s ₃ ,0	s ₁ ,0		
s ₁	s ₄ ,0	s ₀ ,1		
s ₂	s ₆ ,0	s ₅ ,1		
s ₃	s ₀ ,1	s ₃ 0		
s ₄	s ₀ ,1	s ₃ 0		
s ₅	s ₂ ,0	s ₁ 0		
_{S6}	s ₀ ,1	s ₄ 0		

b. Construct a Mealy state diagram that detects a serial input sequence of 10110. Overlapping of the patterns is possible. When the input pattern is detected, it causes output z to be asserted high. First write the flow table and then reduce it.

(8)

Q.7 a. Find the reduced state table for the machine M given below:

(8)

PS	$NS, \overline{Z_1}$			
	xy=00	xy=01	xy=10	xy=11
A	A, -	C, 1	E, 1	B, 1
В	E, 0	C, -	-, -	-, -
С	F, 0	F, 1	E, 0	-, -
D	-, -	E, 0	A, -	-, -
Е	-, -	-, -	A, 0	D, 1
F	C, 0	-, -	B, 0	C, 1

Machine M

- b. What is maximal compatibility? What is the difference between compatible states and maximal compatibility? (8)
- Q.8 a. For the two given Machines M_1 and M_2 , find a bigger machine M which is a serial combination

of M_1 and M_2 .

(8)

	NS,Z	
PS	x=0	x=1
A	В, 0	C, 0
В	A, 1	C, 0 C, 0
C	A, 1 B, 1	A, 0
Maahina N		

PS	NS,Z		
	y=0	y=1	
a	a, 0	b, 1	
b	b, 1	a, 1	

Machine M1 Machine M2

b. Find the state assignment, by choosing self dependent subset, for the machine given below: (8)

PS	NS		Z
	x=0	x=1	
A	Е	В	1
В	E	A	0
C	D	A	0
D	C	F	1
E	F	C	0
F	Е	C	0

- Q.9 a. Write ASM chart for a machine which scans a 3 bit word and produces an output \$\frac{z}{2}\$ when last two bits in consecutive 3 bit word are ones and second output \$\frac{z}{1}\$ which identifies the start of each 3-bit word. Implement the machine using multiplexers.
 (6)
 - b. Explain the role of CAD Tools in digital system design. (6)
 - c. Write a brief note on a micro-programmed controller. (4)