MATHS

Q. 1. The mean of the numbers $a, b, 8,5,10$ is 6 and the variance is 6.80 . Then which one of the following gives possible values a and b ?

$$
\begin{array}{cl}
\text { i. } & a=1, b=6 \\
\text { ii. } & a=3, b=4 \\
\text { iii. } & a=0, b=7 \\
\text { iv. } & a=5, b=2
\end{array}
$$

Sol.
Mean $=\frac{\sum x}{n}=6$
Variance $=\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}=6.8$
$-\frac{a^{2}+b^{2}+64+25+100}{5}-36-6.8$
$\Rightarrow a^{2}+b^{2}+189-180=34$
$\Rightarrow a^{2}+b^{2}=25$

Possible values of a and b is given by (2)
Q. 2. The vector $\vec{a}=a \hat{i}+2 \hat{j}+\beta \hat{K}$ lies in the plane of the vectors $\vec{b}=\hat{i}+\hat{j}$ and $+\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values of α and β ?

$$
\begin{align*}
& \alpha=2, \beta=1 \tag{i.}\\
& \alpha=1, \beta=1 \tag{ii.}\\
& \alpha=2, \beta=2 \\
& \alpha=1 ; \beta=2
\end{align*}
$$

Sol.

As \vec{a}, \vec{b} and \vec{c} are coplanar

$\therefore[\vec{a} \vec{b} \vec{c}]=0$
$0 r, \alpha+\beta=2$
Also \vec{a} bisec ts the angle between \vec{b} and \vec{c}
$\therefore \vec{a}=\lambda(\vec{b}+\vec{c})$
or, $\vec{a}=\lambda\left(\frac{\hat{i}+2 \vec{j}+\vec{k}}{\sqrt{2}}\right)$
(ii)

But $\vec{a}=\alpha \overrightarrow{2}+2 \vec{j}+\beta \vec{k}$
Hence $\lambda=\sqrt{2}$ and $\alpha=1, \beta=1$
Which also satisfy (i)
\therefore Correct answer is (2)
Q. 3.

The non-zero vectons $\vec{a} \cdot \vec{b}$ and \vec{c} are related $b y \vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$

Then the angle between \bar{a} and \bar{c} is

	$\frac{\pi}{2}$
i.	π
ii.	π
iii.	0
	$\frac{\pi}{4}$

Sol. The sign of $\dot{\bar{a}}$ and \vec{c} are opposite. Hence they are parallel but directions are opposite.
Therefore angle between $\bar{\alpha}$ ardd \vec{c} is r
\therefore correct answer is (2)
Q. 4. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the $y z$-plane at the

$$
\text { point }\left(0, \frac{17}{2}, \frac{-13}{2}\right) . \text { Then }
$$

i. $\quad a=6, b=4$
ii. $\quad a=8, b=2$
iii. $\quad a=2, b=8$
iv. $\quad a=4, b=6$

Sol. Equation of line through (5, 1, a) and (3, b, 1) is
$\frac{x-5}{-2}=\frac{y-1}{b-1}=\frac{z-a}{1-a}=\lambda$
any point on (1 is
$\{5-2 \lambda, 1+(b-1) \lambda, a+(1-a) \lambda\}$
$A s\left(0, \frac{17}{2},-\frac{13}{2}\right)$ ies on (i)
$5-2 \lambda=0 \Rightarrow \alpha=\frac{5}{2}$
$1+(b-1) \times \frac{5}{2}=\frac{17}{2}$
or, $2+5 b-5=17$
or, $b=4$
and $a+(1-a) \times \frac{5}{2}=-\frac{13}{2}$
or, $2 a+5-5 a=-13$
or, $a=6$
\therefore Correct answer is (1)
Q. 5. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to

$$
\begin{array}{cc}
\text { i. } & 2 \\
\text { ii. } & 2 \\
\text { iii. } & 5 \\
\text { iv. } & 5
\end{array}
$$

Sol.As the given lines intersect
$\therefore\left|\begin{array}{ccc}2-1 & 3-2 & 1-3 \\ k & 2 & 3 \\ 3 & k & 2\end{array}\right|=0$
Or. $\left|\begin{array}{lll}1 & 1 & 2 \\ k & 2 & 3 \\ 3 & k & 2\end{array}\right|=0$
or, $k=-5,5 / 2$
Integer is -5 on y
\therefore Correct answer is (3)
Q. 6. The differential of the family of circles with fixed radius 5 units and centre on the line $y=2$ is
i. $\quad(y-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
ii. $\quad\left(\begin{array}{ll}x & 2\end{array}\right)^{2} y^{2}=25 \quad\left(\begin{array}{ll}y & 2\end{array}\right)^{2}$
iii. $\quad(x-2) y^{\prime 2}=25-(y-2)^{2}$
iv. $(y-2) y^{\prime 2}-25-(y-2)^{2}$

Sol.The required equation of circle is
$(x-a)^{2}+(y-2)^{2}=25$
differentating we get
$2(x-a)+2(y-2) y^{2}=0$
or, $a=x+(y-2) y^{*}$
putting a in (i)
$\{x-x-(y-2) y\}^{2}+(y-2)^{2}=25$
or, $(y-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
\therefore The correc: anawer is (1)
Q. 7. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that $x=c y+b z, y=a z+c x a n d z=b x+a y$. Ther $a^{2}+b^{2}+c^{2}+2 a b c$ is equal to
i. 0
ii. 1
iii. 2
iv. -1

Sol.

$$
\begin{equation*}
x=c y+b z \Rightarrow x-c y-b z=0 \tag{i}
\end{equation*}
$$

$y=a z+b x \Rightarrow b x-y+a z=0$
(ii)
$z=b x+a y \Rightarrow b x+a y-z=0$
Elim inating x, y, z from (i), (ii) and (iii) weget
$\left|\begin{array}{ccc}1 & -c & -b \\ c & -1 & a \\ b & a & -1\end{array}\right|=0$
or, $a^{2}+b^{2}+c^{2}+2 a b c=1$.
\therefore The correct answer is (2)
Q. 8. Let A be a square matrix all of whose entries are integers. Then which one of the following is true?
$I^{\prime} \operatorname{det} A= \pm 1$, then A^{-1} exists and all its entrios are int egers
If $\operatorname{det} A= \pm 1$, then A^{-1} need not exisi
If det $A= \pm 1$, then A^{-1} exist but all its entries are not necessarily int egers
If $\operatorname{det} A= \pm 1$, then A^{-1} exist and all its entries are non - nt egers

Sol. The obvious answer is (1).
Q. 9. The quadratic equations $x^{2}-6 x a=0$ and $x^{2}-c x+6=0$ and have one root in common. The other roots of the first and second equations are integers in the ratio $4: 3$. Then the common root is
i. 3
ii. 2
iii. 1
iv. 4

Sol.
Let the roots of $x^{2}-6 x+a=0$
be α and 4β and that of $x^{2}-c x+6=0$ be α and 3β
$\therefore \alpha+4 \beta$
$=6$
$4 \alpha \beta$
$=a$
(ii)
$\alpha+3 \beta=c$
$3 \alpha \beta \quad=6$

Using (ii) $8(i v)$

Then $\quad x^{2}-6 x+a=0$
reduces to

$$
\begin{aligned}
& x^{2}-6 x+8=0 \\
& x=\frac{6 \pm \sqrt{36-32}}{2} \\
= & \frac{6 \pm 2}{2}=4,2 \\
\therefore \alpha & =2, \beta=1
\end{aligned}
$$

\therefore Correct answer is (2)
Q. 10. How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent?

i.	$6.8^{7} C_{4}$
ii.	$7 . .^{6} C_{4} \cdot{ }^{8} C_{4}$
iii.	$8 .{ }^{6} C_{4} \cdot{ }^{7} C_{4}$
iv.	$6.7 .{ }^{8} C_{4}$

Sol. $\mathrm{M}=1, \mathrm{I}=4, \mathrm{P}=2$

These letters can be arranged by

$$
\frac{(1+4+2)!}{1!4!2!}=7^{6} \mathrm{C}_{4} \text { ways }
$$

The remaining 8 gaps can be filled by 4 S by ${ }^{*} \mathrm{C}_{4}$ ways
\therefore Total ro. of ways $=7^{6} \mathrm{C}_{4} \quad{ }^{8} \mathrm{C}_{4}$
\therefore Correct answer is i2)
Q. 11.

Let $i=\int_{0}^{1} \frac{\cos x}{\sqrt{2}} d x$. Then which one of the following io true?
i. $\quad I<\frac{2}{3}$ and $J>2$
ii. $\quad I<\frac{2}{3}$ and $J<2$
iii. $\quad I>\frac{2}{3}$ and $J>2$ $I<\frac{2}{3}$ and $J>2$

Sol.

We Know $\frac{\sin x}{x}<1$, when $x \in(0,1)$
$\therefore \frac{\sin x}{\sqrt{x}}<\sqrt{x}$
$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x<\int_{0}^{1} \sqrt{x} d x$
$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x<\frac{2}{3}$
Also, $\cos x<1$, when $x \in(0,1)$
$\therefore \frac{\cos x}{\sqrt{x}}<\frac{1}{\sqrt{x}}$
$\Rightarrow \int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x<\int \frac{1}{\sqrt{x}} d x$
$\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x<2$
$\therefore I<\frac{2}{3}$ and $J<2$
\therefore Correct answer is (4)
Q. 12.The area of the plane region bounded by the curve $x+2 y^{2}=0$ and $3 y^{2}=1$ is equal to

Sol.

$x+2 y^{2}=0 \Rightarrow y^{2}=-\frac{x}{2}$
$x+\leq y^{2}=1 \Rightarrow y^{2}=-\frac{1}{3}(x-1)$
$\therefore-\frac{x}{2}--\frac{1}{3}(x-1)$
or, $\quad-\frac{x}{2}=-\frac{x}{3}+\frac{1}{3}$
or, $\quad \frac{x}{3}-\frac{x}{2}=\frac{1}{3}$
or, $\quad-\frac{x}{6}=\frac{亠}{3}$
or, $\quad \bar{x}=-2$
$\therefore y^{2}=1 \Rightarrow y= \pm 1$

Area of the region BCA
$=\left|\int_{0}^{1}\left\{\left(-2 y^{2}\right)-\left(1-3 y^{2}\right)\right\rangle d y\right|$
$=\left|\int_{0}^{1}\left(y^{2}-1\right) d y\right|$
$=\left|\left[\frac{y^{3}}{3} y\right]_{0}^{1}\right|$
$=\left|\frac{1}{3}-1\right|=\frac{2}{3}$
Hence area of the region bounded by the curve is equal to $2 \times \frac{2}{3}=\frac{4}{3}$
\therefore Correct answer is (2)

