2/27/12 Code: A-20 ## AMIETE - ET (OLD SCHEME) | Code: AE20
Time: 3 Hours | | | JUNE 2010 | Subject: MICROWAVE THEORY & TECHNIQUES
Max. Marks: 100 | | | | | | | |--|----|--|--|--|--|--|--|--|--|--| | NOTE: There are 9 Questions in all. Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else. Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated. | | | | | | | | | | | | Q.1 | Cł | noose the | correct or the best alt | ernative in the following: | (2×10) | | | | | | | | a. | A hollow rectangular waveguide has dimensions 6 cm \times 4 cm. The frequency of impressed signal is 3 GHz compute cut-off wavelength for TE 10 mode. | | | | | | | | | | | | (A) 0.12
(C) 3.25 | | (B) 2.12 m (D) 7.25m | | | | | | | | | b. | In a trav
kept | velling wave tube, the pl | hase velocity of the axial component | of the RF field on the slow-wave structure is | | | | | | | | | (B) slig
(C) slig | ual to the velocity of the
htly less than the velocit
htly more than the velocity
ual to the velocity of ligh | y of electrons.
city of electrons. | | | | | | | | | c. | A waveg | | | | | | | | | | | | | r-pass filter
n-pass filter | (B) band-pass filter(D) band-reject filter. | | | | | | | | | d. | A disadva | antage of microstrips wit | h respect to stripline is that the former | r | | | | | | | | | (B) are (C) are | not lend themselves to permore likely to radiate. bulkier. more expensive and co | printed- circuit techniques. | | | | | | | | | e. | Which or | | | | | | | | | | | | | velling wave tube
ex klystron | (B) Magnetron(D) Gunn diode. | | | | | | | | | f. | A lossles | - | tic impedance Z_0 is terminated in a p | ure reactance of value $^{-\mathrm{j}Z_0}$. The VSWR of the | | | | | | | | | (A) 10 | | (B) 2 | | | | | | | 2/27/12 Code: A-20 | | | (C) 1 | (D) Infin | ite. | | | | | | | | |------------|--|--|--|---|---|--|--|--|--|--|--| | | g. | For a matched transmission line. The VSWR (voltage standing wave ratio) is | | | | | | | | | | | | | (A) Unity | (B) Infi | nity | | | | | | | | | | | (C) Zero | (D) | 0.25 | | | | | | | | | | h. | A directional coupler with three or more holes is sometime preferred over two-hole coupler | | | | | | | | | | | | | (A) because it is more efficient | | | | | | | | | | | | | (B) to increase coupling of the signal | | | | | | | | | | | | | (C) to reduce spurious mode generation | | | | | | | | | | | | | (D) to increase the bandwidth of the system. | | | | | | | | | | | | i. | A transmission line consists of the following distributed constants | | | | | | | | | | | | | (A) resistance and inductance | | | | | | | | | | | | | (B) inductance and shunt capacitance | Ŧ. | | | | | | | | | | | | (C) resistance and series capacitance of | - | | | | | | | | | | | | (D) resistance, inductance and shunt ca | apacitance | | | | | | | | | | | j. | A semiconductor diode which can be used in switching circuits at microwave frequencies | | | | | | | | | | | | | (A) Pin diode | (B) Vara | ctor diode | | | | | | | | | | | (C) Tunnel diode | (D) Gunn | diode | | | | | | | | | | Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks. | | | | | | | | | | | | | | • | _ | _ | ons. | | | | | | | | Q.2 | | Eacl | n question | carries 16 marks. | line for the purpose of impedance | | | | | | | | Q.2 | b. | a. What are the steps involved in | connecting (6) | g a stub to a transmission | | | | | | | | | Q.2 | b. | a. What are the steps involved in matching? Show that a TEM wave cannot propagation. | connecting (6) gate in a way | g a stub to a transmission aveguide. | line for the purpose of impedance | | | | | | | | Q.2
Q.3 | b. | a. What are the steps involved in matching? Show that a TEM wave cannot propage. Calculate the cut-off frequency of 4 cm × 4 cm. (5) | connecting (6) gate in a way | g a stub to a transmission aveguide. 100 10 | line for the purpose of impedance (5) | | | | | | | | | | a. What are the steps involved in matching? Show that a TEM wave cannot propage. C. Calculate the cut-off frequency of the dem × 4 cm. (5) a. Derive the wave equations for components. A lossless transmission line of Z ₀ = 50 | connecting (6) gate in a way of the TE_0 r a TE w (8) Ω is terms the load to the for material Ω . | g a stub to a transmission aveguide. The state of s | line for the purpose of impedance (5) in a square waveguide of dimensions ular wave guide and obtain all field | | | | | | | | | b. | a. What are the steps involved in matching? Show that a TEM wave cannot propage c. Calculate the cut-off frequency $4 \text{ cm} \times 4 \text{ cm}$. (5) a. Derive the wave equations for components. A lossless transmission line of $Z_0 = 50 stub matching arrangement to matching circuited stub and the length of the students.$ | connecting (6) gate in a way of the TE (8) Ω is term the load to the for material Ω is the control of the Ω and Ω is the load to the formaterial Ω is the load to the formaterial Ω is the load to the formaterial Ω is the load to the load to the formaterial Ω is the load to th | g a stub to a transmission aveguide. The state of s | line for the purpose of impedance (5) in a square waveguide of dimensions ular wave guide and obtain all field 100 j using smith chart, design a single e. Calculate the position of the short | | | | | | | | Q.3 | b.
a. | a. What are the steps involved in matching? Show that a TEM wave cannot propage c. Calculate the cut-off frequency $4 \text{ cm} \times 4 \text{ cm}$. (5) a. Derive the wave equations for components. A lossless transmission line of $Z_0 = 50 stub matching arrangement to matching circuited stub and the length of the state (8)$ | connecting (6) gate in a way of the TE (8) If a TE we (8) If is terms the load to the load to the the load to the the load to the the load to l | g a stub to a transmission aveguide. The state of s | line for the purpose of impedance (5) in a square waveguide of dimensions ular wave guide and obtain all field 100 j using smith chart, design a single e. Calculate the position of the short (8) | | | | | | | 2/27/12 Code: A-20 | Q.5 | a. | How are microwave measurements differ from low frequency measurements | ? | (4) | | | | |--|----|---|----------------|-------------------------|--|--|--| | | b. | Explain working of TWT with neat sketch. | (6) | | | | | | | C. | A plane wave propagation through glass having relative permittivity 5 has the magnitude of electric field vector as 100 V/m and frequency 1MHz. Calculate: (i) Velocity and phase shift constant of wave | | | | | | | | | (ii) Magnitude of magnetic field intensity. | (6) | | | | | | Q.6 | a. | Explain how Magic tee can be used as a balanced microwave mixer. | (4) | | | | | | b. Explain the working of a 4 port directional coupler with a neat diagram and derive the relevant (8) | | | | | | | | | | c. | Explain two properties of scattering matrix. | (4) | | | | | | Q. 7 | a. | Explain working principle of magnetron with neat sketch. | (8) | | | | | | | | b. Explain with diagram the microwave setup to measure the frequency (8) | of a wave in a | ı rectangular waveguide | | | | | Q.8 | a. | Write a short notes on TRAPATT. | (6) | | | | | | | b. | What do you understand by over the horizon microwave system? Explain in | brief. | (5) | | | | | | c. | Explain action of isolator using ferrite. (5) | | | | | | | Q.9 | | Write short notes on any TWO of the following: | | | | | | | | | (i) MASERS.(ii) E & H plane tee junctions.(iii) microwave applications(iv) Irises, posts & tuning screws. | (8×2) | | | | |