2/27/12 Code: A-20

Code: AE20 **DECEMBER 2008** **Subject: MICROWAVE THEORY** & TECHNIQUES

Max. Marks: 100 Time: 3 Hours

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- s 16

Q.1	Choose the correct or best alternative in the following:						
	a. Which one of the following can be used for amplification of microwave energy?						
	(A) Travelling wave tube	(B) Magnetron					
	(C) Reflex klystron	(D) Gunn diode					
	b. Geostationary satellites are pla	aced in equatorial orbits at a height of approximately	•				
	(A) 1,000 Km.	(B) 5,000 Km.					
	(C) 18,000 Km.	(D) 36,000 Km.					
	c. The transmission line using two	o ground planes is					
	(A) Coaxial line.	(B) Microstrip.					
	(C) Strip line	(D) Rectangular waveguide.					
	d. For a matched load the value	of VSWR is					
	(A) 0.	(B) ∞.					
	(C) 1.	(D) 0 and 1.					
	e. Rat race coupler is a						
	(A) 3-port network.	(B) two port network.					
	(C) 4-port network	(D) 1 port network					

The following diode does not use negative resistance in its operation

(A) Gunn diode (B) Tunnel diode **(C)** Backward diode (D) IMPATT diode

In a two hole directional coupler; the distance between two holes in terms of guide wavelength ${}^{\lambda}$ g is

2/27/12 Code: A-20

		(A) $^{\lambda}$ g (C) $^{\lambda}$ g/4	(B)	$λ_g/2$ $2λ_g$	
	h.	The dominant modes in microwaves fo	r wa	veguide propagation are	
		(A) $^{\text{TE}}_{10}$ & $^{\text{TM}}_{10}$	(B)	TE_{10} & TM_{11}	
		(C) $^{\text{TE}}_{11} & ^{\text{TM}}_{01}$	(D)	TE ₁₁ & TM ₁₀	
	i.	One of the following material is not use	ed as	resistive material for the fabrication	n of MICS
		(A) Cr	(B)	NiCr	
		(C) ^{Al} 2 ^O 3	(D)	CrSiO	
	j.	When microwave signals follow the cu	rvatu	re of the earth, this is known as	
		(A) Ducting	(B)	Faraday effect	
		(C) Tropospheric scatter	(D)	Ionospheric reflection.	
		· ·		out of EIGHT Questions. rries 16 marks.	
Q.2		a. Give a table of the position of n frequency-band, wavelength band.	nicro	wave bands in the entire Radio s band and designa (4)	
	1	b. Mention some important application (4)	ns of	microwaves. Briefly explain two	of them.
	c.	Starting from fundamentals derive the t	ransn	nission line equations.	(8)
Q.3	a.	A shielded strip line has the following properties to Dielectric constant of the insulator thickness t = 14 mils shield depth: d = (i) the k factor (ii) the fringe capacitance	(poly	styrene): $\epsilon_r = 2.56$ strip width:	w = 25 mils strip
		(iii) the characteristic impedance of the	line.		(6)
	b.	A Rectangular waveguide of cross-se GHz. Determine the cut-off wavelength (6)			e TM 11mode at 10
		c. With reference to wave velocity. (4)	guide	es, differentiate between group	velocity and phase

2/27/12 Code: A-20

Q.4	a. What are ferrites? Why are these useful in microwaves. Mention their properties.	(6)
	b. Using a neat diagram, explain, how can a four port circulator be realized using ma (4)	agic-tees.
Q.5	 c. Derive the scattering matrix of a directional coupler. a. Two identical 30 dB directional couplers are used to sample incident and reflected p waveguide. VSWR = 2 and the output of the coupler sampling incident power = 4.5 n is the value of reflected power? 	
	b. Describe how can the power of a microwave generator be measured using c techniques. (6)	alorimeter
	c. Write a short note on measurement of a cavity resonator. (6)	
Q.6	a. What are MESFETs? Explain the construction, operation, performance characters applications.(6)	and their
	b. What is parametric amplifier? How is it different from a normal amplifier? (4)	
	c. An up-converter parametric amplifier has the following parameters: Ratio of output frequency over signal frequency: $f_o/f_s = 25$ Figure of merit: Y Q = 10	
	Factor of merit figure : $Y = 0.4$ Diode temperature : $T_d = 350^{\circ} K$ Calculate (i) the power gain in decibels; (ii) the noise figure in decibels;	
	(iii) the band width. (6)	
Q.7	 a. How do you distinguish stationary targets and moving targets. Explain the principle and of an MTI radar. (6) 	d working
	b. Derive the radar range equation. Explain the factors that affect the maximum radar. (6)	range of a
	c. A 10 GHz radar has the following characteristics, peak transmitted power = 250 kw; p	=
	of antenna = 2500; minimum detectable peak signal power by receiver = 10^{-14} was sectional area of the radar antenna = 10m^2 .	atts; cross
	If this radar were to be used to detect a target of 2 m^2 equivalent cross section maximum range possible. (4)	n, find the
Q.8	a. What is a waveguide? What are wave guide modes? (4)	

2/27/12 Code: A-20

b.	Why is ${ m ^{TE}_{10}}$	mode, co	nsidered	to be the	DOMIN	NANT MOD	E in rectangu	ılar wa	veguides?
	What is the don								
	guides?	What	are	then	the	preferred	modes	in	circular
	waveguides?				(6)				

- c. For a dominant mode of operation in an air filled circular waveguide of inner diameter 4 cm, find
 - (i) cut-off wavelength.
 - (ii) cut-off frequency.

	· · · ·		1	1 /1	•	.1	• 1
- 1	$\ddot{\mathbf{n}}$)	wave]	lenoth	m	the	onnde
١,	щ	,	vvu vC	CHEUI	шт	uic	Suide

(6)

Q.9 a. Write a short note on Travelling-wave Tube.

(4)

b. Explain the construction and principle of working of a two cavity Klystron Amplifier. Also discuss the process of bunching using an "Applegate diagram".

(6)

c. Describe the modes of operation for Gunn Diodes.

(6)