2/27/12 Code: A-20

JUNE 2008

Code: AE20 Subject: MICROWAVE THEORY & TECHNIQUES Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Ouestions answer any FIVE Ouestions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

- Which one of the following is a transferred electron device?
 - (A) BARITT diode

(B) IMPATT diode

(C) GUNN diode

- **(D)** Step recovery diode
- b. Most commonly used radar antenna is
 - (A) Yagi antenna

- **(B)** Rhombic antenna
- (C) Parabolic reflector
- **(D)** None of the above
- c. One of the following loss is not present in microstrip lines
 - (A) conduction loss

(B) radiation loss

(C) dielectric loss

- **(D)** resistive loss
- d. The reflection coefficient (P), related with load impedance (ZL) and characteristic impedance (ZO), is given by the following expression

(A)
$$\rho = \frac{Z_L + Z_O}{Z_L - Z_O}$$
(C)
$$\rho = \frac{Z_L - Z_O}{Z_L + Z_O}$$

(B)
$$\rho = \frac{Z_O - Z_L}{Z_O + Z_L}$$
(D)
$$\rho = \frac{Z_O + Z_L}{Z_O - Z_L}$$

$$\rho = \frac{Z_L - Z_O}{Z_L + Z_O}$$

$$\rho = \frac{Z_O + Z_L}{Z_O - Z_L}$$

- e. Microwave components are specified by
 - (A) z-parameters

(B) y-parameters

(C) s-parameters

(D) h-parameters

- A tunnel diode is a
 - (A) heavily doped p-n junction diode.
 - **(B)** ordinarily doped p-n junction diode.
 - **(C)** one side highly doped and other side lowly doped.
 - (D) bulk semiconductor device.

2/27/12 Code: A-20

	g. Operation of one of the following is not based on Faraday rotation					
	h.	 (A) circulators (B) gyrator (C) phase shifter (D) isolator Scattering parameters can be measured by a 				
	•	(A) CRO(C) spectrum analyzer	(B) network analyzer(D) reflecto meter			
	i. One of the following selection is not required for the selection of MIC					
		(A) selection of substrate material(C) selection of dielectric film	(B) selection of conductor r(D) selection of soldering ma			
	j. If frequency is 3 GHz to 30 GHz, then wavelength is of the order of					
		(A) centimetre(C) kilometre	(B) metre(D) hectametre			
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.						
Q.2	a. The terminating load of UHF transmission line with characteristic impedance $Z_0 = 50\Omega$, work 300 MHz is $50 + j50\Omega$. Calculate the VSWR and reflection coefficient.					
	b. What are standing waves? Define VSWR. Express VSWR in terms of reflection coefficient (\$\mathcal{P}\$). What do VSWR = 1 and VSWR = \infty signify, with reference to the matching of the transmission line with the load. (6)					
	c.	State Maxwell's equations in integral a	and differential forms.	(6)		
Q.3	a.	 a. A lossless parallel stripline has a conducting stripwidth w. The substrate dielectric separating the conducting strips has a relative dielectric constant ∈rd of 6 (beryllia or beryllium oxide BeO) thickness d of 4 mm. Calculate (i) The required width w of the conducting strip in order to have a characteristic impedance of the strip-line capacitance. (ii) The strip-line inductance. 		ia or beryllium oxide BeO) and a		
		(iv) The phase velocity of the way	ve in the parallel strip line.	(6)		
	b.	Enumerate the advantages and disadv	vantages of MICs.	(4)		
		c. List the basic properties provided by ideal conductor, dielectric, and resistive materials used MMICS. (6)				
Q.4	a.	Define Faraday rotation.		(4)		

2/27/12 Code: A-20

	b.	Write a short note on posts and tuning screws.	(6)
	c.	Derive the scattering matrix of a magic tee.	(6)
Q.5	•	a. Two identical directional couplers are used in a waveguide powers. The output of the two couplers is found to be 2.5 n VSWR in the waveguide.	*
	b.	Describe how can the power of a microwave generator be measured.	ared using Bolometer. (6)
	c.	Describe a technique of measuring the phase shift provided by ne	twork. (6)
Q.6	a	. Briefly explain the construction and operation of microwave parameter. List out its performance characteristics and discuss. (10)	transistors. Discuss its performance
	b.	A typical n-type GaAs Gunn diode has the following parameters:	
		Threshold field E $_{v}$ = 2800 V/cm Doping concentration E = 3200 V/cm Operating frequency f = 10GHz Device length L = 10 μ m	$n_0 = 2 \times 10^{14} \text{cm}^{-3}$ Applied field
		(i) Compute the electron drift velocity.(ii) Calculate the current density.	
		(iii) Estimate the negative electron mobility.	(6)
Q.7	a.	Show that the free space path loss is given by $L_{dB} = (32.5 + 20 \log d + 20 \log f) dB \text{ where d is the separation}$ and f is the frequency of operation. (6)	on between Transmitter and Receiver
	b.	Write a short note on lens antenna.	(6)
	c.	Calculate the beamwidth between first nulls and the beamwidth be paraboloid used in the S band at 3 GHz. Also determine the gain	
Q.8	a.	Compare the waveguides with 2-wire transmission lines.	(6)
	b	. Justify that a TEM wave (Transverse electric and magnetic) can hollow waveguide. (4)	annot propagate in a single conductor
	С	Design a rectangular metal waveguide to carry only the $^{\mbox{TE}}_{10}$ (6)	mode at a frequency of 5000 MHz.
Q.9	a.	By carrying out detailed mathematical analysis for reflex Klystro power output. (10)	n, obtain the expression for maximum
	b.	A reflex Klystron operates at the peak mode of $n = 2$ with bean	$voltage V_0 = 300V$. Beam current

2/27/12 Code: A-20

 $I_0 = 20$ mA, signal voltage $V_1 = 40 V$. Determine

- (i) the input power in watts
- (ii) o/p power in watts
- (iii) efficiency (6)