2/27/12 Code: A-20

Code: A-20 Subject: MICROWAVE THEORY & TECHNIQUES Time: 3 Hours June 2006 Max.

Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 (Choose 1	the	correct	or	best	alterna	ıtive	in	the	followi	ng:
-------	----------	-----	---------	----	------	---------	-------	----	-----	---------	-----

(2x10)

a. For a distortion less transmission line we have the condition

$$(A) \frac{R}{L} = \frac{G}{C}$$

$$\mathbf{(B)} \quad \frac{\mathbf{R}}{\mathbf{G}} = \frac{\mathbf{C}}{\mathbf{L}}$$

(C)
$$R = G$$

(D)
$$L = C$$

b. Series stubs are used in

- (A) Transmission lines
- (B) waveguides

(C) co-ax lines

(D) cables

c. The cut-off frequency of a TEM wave is

(A) infinity only

(B) equal to that of TM wave

(C) zero

(D) equal to that of TE wave

d. S-parameters are complex quantities with [s] matrix of

(A) co property

(B) -ve property

(C) +ve property

(D) zero property

e. "Rat race" is a phenomenon referred to

(A) Hybrid Tee

(B) H plane Tee

(C) E plane Tee

(D) waveguides

f. The normalized value of the input impedance of a waveguide terminated in matched load is

(A) zero

(B) unity

(C) ∞

(D) -ve value

2/27/12 Code: A-20

g. Microstrip used for microwaves is a

		(A) homogeneous line(C) HP line	(B) LP line(D) inhomogeneous line.						
	h.	n. The dominant modes in microwaves for wave guide propagation are							
		(A) TM ₁₁ & TE ₁₀ (C) TM ₀₁ & TE ₁₁	(B) TM ₁₀ & TE ₁₀ (D) TM ₁₁ & TE ₁₁						
	i.	The reflection co-efficient for a terminate	ation $R_L = Z_0$						
		(A) zero (C) one	(B) infinity(D) any value						
	j.	Magnetron is a							
		(A) Low power amplifier.(C) Low power oscillator.	(B) High power amplifier.(D) High power oscillator.						
		_	stions out of EIGHT Questions. on carries 16 marks.						
Q.2		a. Give a table of the position of a frequency-band, wavelength band.	microwave bands in the entire Radio spectrum giving the band and designation (IR _{CC}) (4)						
	b.	Mention some important applications	of microwaves. Briefly explain two of them. (4)						
	c.	Starting from fundamentals derive the	transmission line equations. (8)						
Q.3	a.	With neat diagrams describe how do of matching in this case.	ouble stub impedance matching is achieved. Give sequence (8)						
		b. Using wave equations develop the parallel conducting planes.	e expressions for the fields in Transverse Electric modes in (4)						
	c		edance $R_O = 50$ ohms is terminated in a load of $Z_L = (50 + 1)^{-1}$ is 4 cms. Determine the first V_{max} and first V_{min} from the (4)						
Q.4	ŧ	a. Explain mathematically the characters cannot propagate in a wave-guide.	teristics of TE and TM waves. Describe why TEM wave						

2/27/12

Q.5

Q.6

Q.7

Q.8

Q.9

	Code: A-20	
1	b. A wave-guide operating in TE_{10} mode has dimensions $a=2.26$ cms and measured guide wavelength is 4 cms. Find cut-off frequency, of the propaging frequency of operation and maximum frequency of propaging guide. (6)	gation mode, the
c.	Write a short note on microwave integrated circuits.	(4)
a.	Develop mathematically the scattering matrix representation of a microwave ports. (6)	network with two
b	With a neat sketch explain the principle of operation of a rotary joint for circ (4)	cular waveguides.
(e. Starting from Maxwell's equations derive the field components existing in hometallic waveguide for TE waves. (6)	ollow rectangular
a.	Prove that TEM waves cannot exist in hollow metallic waveguides.	(6)
b.	Obtain an expression for the Q factor of a cavity resonator.	(6)
c.	Compare stripline and micro strip lines.	(4)
a.	List the various components that make up a microwave test bench. Briefly me the setup. (4)	ention their role in
b.	With a neat circuit diagram describe how microwave frequency is measured.	(6)
c.	Explain the various modes of operation of a Gunn diode.	(6)
a.	Explain with neat diagrams, the principle of Magnetron tube.	(8)
b.	Explain the working of a Travelling Wave Tube with the help of neat diagrams.	(8)
	Write short notes on any TWO of the following:	
	 (i) Varactor diode – operation in detail. (ii) IMPATT and TRAPATT – their operation. (iii) Fading and Diversity reception. 8) 	(2 x