2/27/12 Code: A-20

Code: A-20 Subject: MICROWAVE THEORY & TECHNIQUES
Time: 3 Hours Max. Marks: 100

NOTE: There are 11 Questions in all.

- Question 1 is compulsory and carries 16 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Answer any THREE Questions each from Part I and Part II. Each of these questions carries 14 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose	the correct or	best al	lternative	in the	following:
------------	--------	----------------	---------	------------	--------	------------

(2x8)

- a. A lossless transmission line of $Z_0 = 100\Omega$ is terminated by an unknown impedance. The termination is found to be at a maximum of the voltage standing wave and the VSWR is 5. The value of the terminating impedance is
 - **(A)** 500 Ω .

(B) 50 Ω .

(C) 600Ω .

- **(D)** 60Ω .
- b. A transmission line less than $\lambda/4$ long short circuited at the far end acts like a
 - (A) pure inductance.

- **(B)** pure capacitance.
- **(C)** series resonant circuit.
- (**D**) parallel resonant circuit.
- c. When a particular mode is excited in a wave guide there appears an extra electric component in the direction of propagation. The resulting move is
 - (A) Longitudinal electric.
- **(B)** Transverse electromagnetic.
- **(C)** Transverse electric.
- **(D)** Transverse magnetic.
- d. A cavity resonator simulates
 - (A) a series resonant circuit.
- **(B)** a parallel resonant circuit.
- **(C)** an iris inserted in a waveguide.
- **(D)** a free running osillator.
- e. The following solid-state device can operate at high power levels of the order of 100 W
 - (A) TRAPATT

(B) IMPATT

(C) GUNN

(D) PIN

2/27/12 Code: A-20

	f.	A pyramidal horn has an opening of 58 mm in the E-plane and 78 mm in the H-plane and if operate at 10 GHz. The gain of the horn antenna is		
		(A) 47.7 (C) 57.7	(B) 37.7 (D) 27.7	
	g.	A loop is used to couple a waveguide close to the end wall of the guide.	and is placed in a location which for the ${\rm TE}_{10}$ mode occurs	
		(A) Maximum electric field.(B) Minimum magnetic field.(C) Maximum magnetic field.(D) Maximum electric and magnetic field.	elds.	
	h.	Suppose a microwave transmitter and a receiver towers have equal height with respect to Mean Sea Level (MSL), in order to communicate over a distance of 40 km, their MSL height should be		
		(A) 33.5 m (C) 23.5 m	(B) 43.5 m (D) 13.5 m	
		Answer any THREE Questic	PART I ons. Each question carries 14 marks.	_
Q.2	a.	Distinguish between two wire parallel t		
	b.	dBs given a lossless transmission lin	tion loss, transmission loss, return loss and insertion loss in the with a characteristic impedance of 200 Ω fed by a por 100 Ω . The line is 300 m long and terminated by a	
Q.3	a.	Derive the wave equation for a TM waveguide.	wave and obtain all the field components in a rectangular (10)	
	b	Calculate cut off frequency for the . (4)	has dimensions of a =1.067 cm, $b = 0.432$ cm. TE_{11} mode if the guide is filled with Teflon ($\epsilon_r = 2.1$)	
Q.4	a.	What do you understand by the term for the Q-factor of a rectangular cavity	quality factor of a cavity resonator? Obtain an expression resonator. (10)	

b. Write a note on re-entrant cavities.

Q.2

Q.4

(4)

2/27/12 Code: A-20

Q.5	a.	Obtain the scattering matrix of a Magic Tee. Mention at least thre (9)	ee of its applications.
	b.	The collinear ports of a magic tee are terminated by impedances of reand $\rho_2 = 0.6$. The difference port is terminated by an impedance of 0.8. If 1 watt power is fed at the sum port, calculate the power response power division at ports.	with reflection coefficient o
Q.6		a. What are ferrites? Why are they useful at microwave to properties. (6)	frequencies? Mention thei
	b.	Explain the action of an isolator using ferrites.	(4)
	c.	Distinguish between; (i) E-bend and H-bend (ii) E-corner and H-corner	(4)
		PART II Answer any THREE Questions. Each question carries 14	marks.
Q.7		a. Explain the methods of measuring an unknown impedance(6)	at microwave frequencies
	b.	With reference to a microwave bench, explain briefly the following:	
		(i) Wavemeters.(ii) Vector network analyser.	(8)
Q.8	a.	Distinguish between TWT amplifier and Klystron amplifier.	(4)
	b.	Explain how amplification is achieved in a TWT amplifier.	(6)
	c.	What is frequency pushing and pulling in a magnetron? List the performagnetron. (4)	ormance characteristics of a
Q.9	a	. Explain the doping profiles of a varactor diode as well as its elec (6)	trical equivalent circuit.

b. With reference to parametric amplifier, explain

2/27/12 Code: A-20

(i)

(ii)

(iii)

(iv)

Parametric up converter.

Negative resistance parametric amplifier.

Degenerate parametric amplifier.

Broadband parametric amplifier.

Q.10	a.	Distinguish between				
	(i)	Delayed domain mode and Quenched domain mode in a GUNN device.				
	(ii)	IMPATT and TRAPATT.				
	(iii)	MESFETS and Bipolar microwave transistors	s. (9)			
Q.11	requii	red to initiate Gunn effect? (5) Write explanate	ory notes on (Any FOUR):-			
	(i)	Microwave antennas.				
	(ii)	Fading.				
	(iii)	Microwave applications.				
	(iv)	Microwave repeaters.				
	(v)	Strip lines.				
	(vi)	Phase shifters.	$(3.5 \times 4 = 14)$			

(8)