Reg.	No
------	----

Name.....

FIRST YEAR B.Sc. DEGREE EXAMINATION, APRIL/MAY 2005

Part III-Physics Subsidiary

Paper I—MECHANICS, PROPERTIES OF MATTER, THERMAL PHYSICS, LAGRANGIAN DYNAMICS AND THEORY OF RELATIVITY

(For Maths Main)

Time: Three Hours

Maximum: 50 Marks

Section A

Answer any two questions.

Each question carries 7 marks.

- 1. Derive Lagrangean equation of motion using D'alembert's principle.
- 2. Derive an expression for the excess of pressure over a curved surface. Write a note on the variation of Surface Tension with temperature.
- 3. Distinguish between Isothermal and Adiabatic process. Derive the expression for the work done by a perfect gas in (i) isothermal change and (ii) an adiabatic change.
- 4. Describe the Michelsor-Morley experiment and explain the physical significance of the negative result.

 $(2 \times 7 = 14 \text{ marks})$

Section B

Answer any twelve questions. Each question carries 2 marks.

- 5. Find an expression for the Moment of Inertia of a solid disc.
- 6. Derive the relation between the elastic constants.
- 7. What are damped and forced oscillations?
- 8. Find the variation of intrinsic energy with volume for a gas obeying Van der Waals equation.
- 9. Explain entropy change in an irreversible process.
- Define torque and angular momentary.
- 11. Explain 'length contraction' and time dilation'
- 12. State two laws of thermodynamics and explain their significance.
- 13. What are reversible and irreversible processes?
- 14. Derive $Pv^r = constant$ for an ideal gas.
- 15. How is energy distributed in a black body spectrum?
- 16. Show that Rayleigh Jeans law and Wien's law are special cases of Planck's law.
- 17. Explain Weidmann and Franz law.

- 18. Explain the source of solar energy.
- 19. Write a note on liquid heliun I and II.
- 20. What is meant by Q-factor? Write down the equation for a forced harmonic oscillator.
- 21. State the laws of transverse vibration of a stretched string.
- 22. Explain 'damped' and 'forced' harmonic oscillations.
- 23. What are the disadvantages of Newtonian Mechanics?
- 24. What are holonomic and Non-holonomic constraints?

 $(12 \times 2 = 24 \text{ marks})$

Section C

Answer any four questions. Each question carries 3 marks.

- 25. A force $F = 3\vec{i} + 2\vec{j} + 4\vec{k}$ is acting at a point (1, -1,2). Calculate its torque about the point (2, -1,3).
- 26. Two tubes A and B of lengths 1m and 0.5m have radii 10^{-4} m and 2×10^{-4} m respectively. If a liquid is passing through the two tubes entering A at a pressure of 0.8m of mercury and leaving B at a pressure of 0.76m of mercury, find the pressure at the junction of A and B.
- 27. Calculate the Kinetic Energy of an electron-moving with a velocity of 0.98c in the laboratory system. $M_o = 9.11 \times 10^{-31} \text{ Kg}$
- 28. Find the amount of work done in twisting a steel wire of radius 10^{-3} m and of length 0.25m through an angle of 45° . G for steel is 8×10^{10} Pascals.
- 29. A quantity of air (r = 1.4) at 27°C is compressed (i) slowly and (ii) suddenly to one third its volume. Find the change in temperature in each case.
- 30. Calculate the change in entropy when a certain mass of ice is completely converted into steam.
- 31. A copper plate of thickness 0.5cm has a temperature difference of 100°K between its opposite faces. If the area of the plate is 500 cm². Calculate the quantity of heat flowing through the plate in 1 minute K of copper is 385 w/m/k.