neg.	110

Name.....

FIRST YEAR B.Sc. DEGREE EXAMINATION, APRIL/MAY 2005

Part III-Physics Subsidiary

PH (CH) 11-MECHANICS, PROPERTIES OF MATTER AND THERMAL PHYSICS

(For Chemistry Main)

(2004 admissions)

Time: Three Hours

Maximum: 50 Marks

Section A

Answer any two of the following questions.

Each question carries 7 marks.

- 1. Derive an expression for the moment of inertia of a solid sphere about its diameter.
- 2. Derive an expression for torsional rigidity of a wire. Discuss static torsion method of determining rigidity modular.
- 3. State stefan's law. Verify it experimentally.
- 4. Describe carnot cycle and deduce the efficiency of an ideal heat engine.

 $(2 \times 7 = 14 \text{ marks})$

Section B.

Answer any **twelve** of the following questions. Each question carries 2 marks.

- 5. Define moment of inertia. What is its physical significance?
- 6. State and explain parallel axes theorem in moment of inertia.
- 7. What is a compound pendulum? What is meant by its equivalent length?
- 8. What is quality factor? How is it related to frequency?
- 9. Explain damped oscillations.
- 10. State Stoke's formula. Verify it dimentionally.
- 11. Explain streamline motion.
- 12. Derive an expression for the excess of pressure inside a spherical bubble.
- 13. State Graham's law of diffusion.
- 14. Bring out the analogy between liquid diffusion and heat conduction.
- 15. What do you mean by a black body?
- 16. Explain Wein's displacement law.
- 17. Write the equation for cylindrical flow of heat. Explain the symbols used.
- 18. Derive the expression for work done during an isothermal process.

- 19. Define phase space.
- Explain first order phase transition. 20.
- 21.What is super fluidity?
- State and explain Maxwell-Bottzman statistics. 22.
- What are Bosons and Fermions? 23.
- 24. Sketch the energy spectrum of a black body.

 $(12 \times 2 = 24 \text{ marks})$

Section C

Answer any four of the following questions. Each question carries 3 marks.

- 25. Calculate the moment of inertia of a solid cylinder of length 4 m, radius 0.5 m and mass 5 kg. about on axis passing through its geometric centre and perpendicular to it's length.
- 26. Velocity of longitudinal sound waves through a brass rod is 3,500 m/s. If the density of brass is 8,500 kg/m³, calculate the Young's modulus of the rod.
- 27. A bar 1 m in length and 0.01 m square in section is clamped horizontally as a cantilever. When a load of 1 kg is applied to the free end, the depression of this end is 0.04 m. Find the Young's modulus of the material of the par.
- 28. Calculate the mass of water flowing in 10 secs. through a horizontal capillary tube of radius 10⁻³ m. fitted at the bottom of a constant level tank of depth 1m. Length of the tube is 0.3142 m. Coeffecient of viscosity of water is 10⁻³ Ns m⁻². **29**. Estimate the effective temperature of the sun from the following data. Diameter of the sun
- 13.9×10^5 km. Mean distance of sun from earth 1.497×10^8 km. Solar constant $1400 \text{ J/m}^2/\text{s}$ Stefan's constant is equal to 5.7×10^{-8} w/m² K⁴.
- Find the efficiency of the Carnot engine working between steam point and ice point. 30.
- 31. Calculate the depression of the melting point of ice, produced by 1.01×10^5 Pa increase. Specific latent heat of fusion of ice equals 3.3×10^5 J/kg. The densities of ice and water at 273 K are $920 \text{ kg/m}^3 \text{ and } 1000 \text{ kg/m}^3.$