Name.....

FIRST YEAR B.Sc. DEGREE EXAMINATION, APRIL/MAY 2005

Part III--Physics-Subsidiary

PH (GL) 11—MECHANICS, PROPERTIES OF MATTER, THERMAL PHYSICS AND PHYSICS OF THE EARTH

(For Geology Main)

(2004 Admissions)

Time: Three Hours

Maximum: 50 Marks

Section A

Answer any two of the following questions. Each question carries 7 marks.

- 1. Derive an expression for the moment of inertia of a solid sphere about its diameter.
- 2. Formulate the differential equation for a forced harmonic oscillator and obtain a solution for it. Discuss the condition of resonance.
- 3. Discuss the working of a carnot engine. Derive the expression for its efficiency.
- Derive an expression for the gravitational potential and field at a point outside a thin uniform spherical shell.

 $(2 \times 7 = 14 \text{ marks})$

Section B

Answer any twelve of the following. Each question carries 2 marks.

- 5. State perpendicular axes theorem in moment of inertia.
- 6. Derive an expression for the moment of inertia of an annular ring about an axis passing through its centre perpendicular to its length.
- 7. What is a gyroscope ?
- 8. Draw the potential energy curve of a diatomic molecule. What is zero point energy?
- 9. Give the three dimensional wave equation and its possible solution.
- 10. What is a damped harmonic oscillator? Give two examples.
- 11. Define plane of pending and neutral axis.
- 12. How does surface tension vary with temperature?
- 13. With the general expression for excess of pressure for a curved liquid surface. Hence the expression for it in a spherical drop.
- 14. Explain streamline motion.
- 15. Define efficiency of a heat engine. In what circumstances will the efficiency become 100 %.

 $(12 \times 2 = 24 \text{ marks})$

- State and explain Stefan's law.
- 17. Compare Petrol and Diesel engines.
- Get an expression for adiabalic elasticity.
- 19. State Weidman-Franz law.
- 20. Explain absolute scale of temperature.
- What is gravitational self energy? 21.
- What are seismic waves. Name those waves in the sea.
- State the properties of ionosphere.
- 24. Explain the structure of the atmosphere.

Section C

Answer any four of the following questions.

Each question carrier 3 marks.

- 25. A disc of mass 2 kg. and radius 10 cm. suspended horizontally by a vertical wire attached to its centre. If the radius of the wire is 0.6 mm, length is 1.25 m and period of torsional oscillations is 6 seconds find the rigidity modulus of the material of the wire.
- 26. Calculate the velocity of propagation of longitudinal sound waves through a steel rod. $E = 20 \times 10^{10} \text{ N/m}^2$; $\rho = 7.6 \text{ gm/cm}^3$.
- 27. Water is conveyed through a tube 8 cm. in diameter and 4 km. in length, at the rate of 120 litres per minute. Calculate the pressure required to maintain the flow, $\mu = 0.001 \text{ Ns/m}^2$.
- 28. Calculate the moment of inertia of a solid cylinder of mass 5 kg. radius 0.5 m and length 4 m. about an axis passing through its geometric centre and perpendicular to its length.
- 29. A carnot engine operates between temperatures 500 k and 300 k. If it received 1500 joules of heat from the source in each cycle. Calculate the heat rejected to the sink in each cycle. 30. One mole of a gas at 27°C expands adiabatically until its volume is doubled. Calculate the work
- done. y = 1.4. 31. Estimate the effective surface temperature of the Sun from the following data.
 - $13.9 \times 10^{5} \text{ km}$ (a) Mean diameter of sun
 - (b) Mean distance of Sun from earth = $1.497 \times 10^8 \text{ km}$.
 - 1400 J m^{-2} s⁻¹ (c) Solar constant
 - $5.7 \times 10^{-8} \text{ W } m^{-2} k^{-1}$ (d) Stefan's constant
- $(4 \times 3 = 12 \text{ marks})$