Dall	No	
Roll	INO.	-

Total Pages: 2

8912

BT-5/D05 ANTENNA AND WAVE PROPAGATION PAPER - ECE-301E

Time: 3 Hrs.

Maximum Marks: 100

Note: Attempt five questions by selecting at least One question from each section. All questions carry equal marks.

Assume suitable data if necessary.

SECTION- A

- 1. a. Derive the radiation resistance for a half wave dipole.15
 - b. Calculate effective length of half wave dipole antenna for given data : $R_f = 73\Omega$, $(Ae)_{max} = 0.13 d^2$ and $\eta = 120\pi$.
- 2. Write short notes on :

5 x 4

- a. Radiation pattern
- b. Polarization
- c. Effective height
- d. Beam width

SECTION - B

- Explain with sketches a helical antenna and briefly describe its operation in the axial mode. How does it differ from other antennas?
- Derive the expression for radiated fields and characteristics impedance of the infinite Biconical antennas.

(5th sem. Electronics)

10

SECTION - C

- a. Explain important features of horn antenna and the principle of its working.
 - Describe the methods of feeding a parabolic reflector in which the primary antenna is located at the focal point.10
- 6. a. Explain working of a folded dipole antenna.
 - b. Write short notes on Broad-band antennas. 10

SECTION- D.

- 7. a. Assume that reflection takes place at a height of 400 km and that the maximum density in the ionosphere corresponds to a 0.9 refractive index at 10 MHz. What will be the range for which the MUF is 10 MHz? Take the earth curvature into consideration.
 - b. Derive the expression for virtual height. 8
 Write short notes on: 5 x 4
 - a. Optimum working frequency for ionosphere
 - b. Duct propagation
 - c. Multihope propagation
 - d. Fading of received signal