PART III – MATHEMATICS

1.	If A and B are two square matrices such that $B = -A^{-1}BA$, then $(A+B)^2$ is equal to			$(B)^2$ is equal to
	A) 0	B) $A^2 + B^2$	C) $A^2 + 2AB + B^2$	D) $A + B$
2.	Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$	and $B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & k \\ 0 & -2 & 3 \end{bmatrix}$	$\left]. \text{ If } B = 10A^{-1}, \text{ then } k\right]$	equals
	A) 2	B) –1	C) –2	D) 5
3.	The value of λ for which the system of equations $x + y - 2z = 0$, $2x - 3y + x - 5y + 4z = \lambda$ is consistent is			=0, 2x-3y+z=0,
	A) 1	B) -1	C) 0	D) 2
4.	The region in the Argand plane defined by $ z-2i + z+2i <5$ is the interest ellipse with major axis along			is the interior of the
	A) the real axis C) $y = x$		B) $y = -x$ D) the imaginary axis	
5.	The argument of the complex number $(1+i)^4$ is			
	A) 135°	B) 180°	C) 45°	D) 90°
6.	If $\omega = \alpha + i\beta$, where $\beta \neq 0$ and $z \neq 1/2$ satisfies the condition that $\frac{\omega - 2\overline{\alpha}}{1 - 2\overline{z}}$ then the set of values of z is			$\frac{v-2\overline{\omega}z}{1-2z}$ is purely real,
	A) $\{z: z = \overline{z}\}$		$\mathbf{B}\left\{z:\left z\right =\frac{1}{2}\right\}$	
	$\mathbf{C}) \left\{ z : \left z \right = 1 \right\}$		D) $\left\{ z : \left z \right = \frac{1}{2} \text{ and } z \right\}$	$\neq \frac{1}{2}$
7.	The point (<i>a</i> , 2 <i>a</i>) is an interior point of the region bounded by the parabola $y^2 = 16x$ and the double ordinate through the focus. Then <i>a</i> belongs to the interval			

A) a < 4 B) a > 4 C) 0 < a < 2 D) 0 < a < 4

- 8. If the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} \frac{y^2}{81} = \frac{1}{25}$ coincide, then the value of b^2 is
 - A) 1 B) 5 C) 7 D) 9
- 9. A tetrahedron has vertices at O(0,0,0), A(1,2,1), B(2,1,3) and C(-1,1,2) then the angle between the faces OAB and ABC will be

A)
$$\cos^{-1}\left(\frac{19}{35}\right)$$
 B) 90° C) 30° D) $\cos^{-1}\left(\frac{17}{31}\right)$

10. If the normal to the curve y = f(x) at the point (3, 4) makes an angle $\frac{3\pi}{4}$ with the positive *x*-axis, then f'(3) is equal to

A) -1 B) 1 C) $\frac{4}{3}$ D) $\frac{-3}{4}$

11. The maximum value of $(1/x)^x$ is

A)
$$e^{e}$$
 B) $e^{1/e}$ C) $(1/e)^{e}$ D)

12. A spherical balloon is expanding. If the radius is increasing at the rate of 2 inches per minute, the rate at which the volume increases (in cubic inches per minute) when the radius is 5 inches is

е

- A) 10π B) 50π C) 200π D) 100π
- 13. The maximum degree of x by which determinant is $\begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix}$ divisible

A) 0 B) 1 C) 2 D) 3

14. If ω is cube root of unity, then $(1 + \omega - \omega^2)^7$ equals

- A) 128ω B) -128ω C) $128\omega^2$ D) $-128\omega^2$
- 15. The region in the Argand plane defined by |z-2i|+|z+2i|<5 is the interior of the ellipse with major axis along

A) $y = x$	B) $y = -x$
C) the real axis	D) the imaginary axis

- 16. If P(x, y) is any point on $16x^2 + 25y^2 = 400$ and $F_1 = (3, 0)$, $F_2 = (-3, 0)$ and then $PF_1 + PF_2$ equals
 - A) 6 B) 8 C) 10 D) 12
- 17. If P is a point on the rectangular hyperbola $x^2 y^2 = a^2$, C is its centre and S,S' are the two foci, then SP.S'P =

A)
$$(CS)^2$$
 B) $(CP)^2$ C) 2 D) $(SS')^2$

18. If |a| = 6, |b| = 8, |c| = 2 and $\vec{a} + \vec{b} + \vec{c} = 0$, then the value of $|\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}|$ is

19. Let \overline{a} , \overline{b} and \overline{c} be three non-zero and non-coplanar vectors and \overline{p} , \overline{q} and \overline{r} be three vectors given by $\overline{p} = \overline{a} + \overline{b} - 2\overline{c}$, $\overline{q} = 3\overline{a} - 2\overline{b} + \overline{c}$ and $\overline{r} = \overline{a} - 4\overline{b} + 2\overline{c}$. If the volume of the parallelopiped determined by \overline{a} , \overline{b} and \overline{c} is V₁ and that of the parallelopiped determined by \overline{p} , \overline{q} and \overline{r} is V₂, then V₂: V₁ is equal to

20. The value of
$$\int_{0}^{\frac{\pi}{2}} (\cos x)^{\sin x} (\cos x - \sec x + \log(\cos x)^{\cos x}) dx$$
 is

A) 1 B)
$$\frac{\pi}{2}$$
 C) 0 D) -1