Diplete – ET/CS (NEW SCHEME) – Code: DE58 / DC58

Subject: LOGIC DESIGN

Time: 3 Hours

DECEMBER 2010

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

• Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best altern	ative in the following:	(2×10)	
	a. A quantity having continuous value	s is called a		
	(A) digital quantity(C) binary quantity	(B) analog quantity(D) natural quantity		
	b. The maximum count of a 2 digit and 3 digits Hex No. is			
	(A) FFFH & FFH (C) FFH & FFFFH	(B) FFH & FFFH (D) AA & FFF		
	c. The gate ideally suited for bit comparison is			
	(A) Two input EX-OR gate(C) NOR gate	(B) Two input EX-NOR gate(D) NAND gate		
	d. A maximum positive and negative numbers which can be represented in 2's complement form using n bits is			
	(A) +(2^{n-1} -1), -(2^{n-1} -1) (C) + 2^{n-1} , - 2^{n-1}	(B) +(2 ⁿ⁻¹ -1), -2 ⁿ⁻¹ (D) +2 ⁿ⁻¹ , -(2 ⁿ⁻¹ +1)		
	e. ASCII code is basically a			
	(A) 7 bit code(C) 4 bit code	(B) 12 bit code(D) 6 bit code		
	f. 2 numbers can be adjacent only if they differ by			
	(A) 2 ⁿ (C) 4	(B) 2×n (D) n ²		

g. The dual of a b	oolean function is obtained by			
(A) interchang(B) changing a(C) changing a(D) inter change	ing all 0's & 1's only all 0's to 1's only all 1's to 0's only ging (i) all 0's & 1's (ii) '+' and '.' signs.			
h. A combinational circuit				
(A) never conta(B) always con(C) may somet(D) contain on	 (A) never contains memory elements (B) always contains memory elements (C) may sometimes contain memory elements (D) contain only memory elements 			
i. How many 4 b	. How many 4 bit word can be stored in 512 bit ROM			
(A) 512 (C) 2048	(B) 128 (D) 64			
j. Number of Flip	p-flops required to construct a MOD 64 counter is			
(A) 64(C) 33	 (B) 4 (D) 6 			

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Explain with a block diagram, the functional parts of a digital computer (2+6)
 - b. Do the conversions for the following:
 - (i) $(0.3125)_{10}$ to Binary
 - (ii) Hex equivalent of $(1110\ 1101\ 1110\ 10)_2$
 - (iii) $(0.325)_8$ to decimal
 - (iv) $(100\ 111\ 010)_2$ to octal $(4 \times 2 = 8)$

Q.3 a. Solve the following:

- (i) $\overline{X\overline{Y} + XYZ} + X(Y + X\overline{Y})$
- (ii) Write the truth table for the circuit given in Fig.1 indicating intermediate variables and also the boolean expression for the output. (2+2)

2

(4)

	b.	Simplify the given boolean function using 4 variable k map in SOP and POS forms. Also realize in the simplified expressions using NAND and NOR gates. $(2 \times 4=8)$	5	
		$F(a, b, c, d) = \Sigma m (0,1,2,3,10,11,12,13,14,15).$		
Q.4	a.	Explain in detail, the working of an edge triggered JK Flip-Flop. (4+2+2)		
	b.	Explain the operating characteristics of Flip-Flops. $(4 \times 2=8)$		
Q.5 a. b.		Describe a n bit binary ripple carry adder showing typical carry propagation delays. (4+4)		
		Subtract the following numbers using 2's complement method and also show direct subtraction.		
		(i) $11100 \text{ from } 10011.$ (2)(ii) Add + 128 and -130(2)		
	c.	(i) Add 647 and 482 in BCD code (4)		
Q.6 a.		Describe the working of asynchronous decade counter. (2+2+4)		
	b.	Design a Mod 3 synchronous counter using JK Flip-Flops. (2+2+2+2)		
Q.7 a.		What is a multiplexer? Draw the diagram of a 8:1 multiplexer with expressions and truthtable. (4+4)	S	
	b.	Draw and explain BCD to 7 segment decoder. (2+4+2)		
Q.8	a.	Explain the working of a shift left & shift right register. (4+4)		
	b.	Explain in detail, the operation of Johnson counter. (8)		
Q.9	a.	Define the following terms:(ii) Dynamic memory device(iii) Internal memory(ii) Dynamic memory device(iv) External memory(4×2=8)		
	b.	What is RAM? What are its various types and explain each type. (8)		

3