5/1/12 Code: A-20

Diplete - ET/CS (NEW SCHEME) - Code: DE58 / DC58

Subject: LOGIC DESIGN

Time: 3 Hours	Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:	(2	10))
-----	--	----	----	----

- a. The term bit means
 - (A) a small amount of data
- **(B)** a 1 or a 0

(C) binary digit

- **(D)** both answers (B) or (C)
- b. The BCD number for decimal 473 is
 - **(A)** 111 0 11010

- **(B)** 11000 1110011
- **(C)** 01000111 00 11
- **(D)** 01001111 0011
- c. The out put of a gate is low when at least one of its input is low. It is true for
 - (A) AND

(B) OR

(C) NAND

- (D) NOR
- d. Which one of the following is not a valid rule of Boolean algebra?
 - **(A)** A+1 = A

(B) A+0 =

(C) A = 0

- **(D)** AA = A
- e. The AND operation can be produced with
 - (A) two NAND gates

(B) three NAND gates

(C) one Nor gate

- (D) two Nor gates
- f. A 4- bit parallel adder can add
 - (A) two 4 bit binary numbers.
- **(B)** two-2-bit binary numbers

(C) four bit at a time

- **(D)** four bite in sequence
- g. A modules -10 Johnson counter requires
 - (A) ten flip flops

(B) four flip- flops

(C) five flip flops

- (D) eight-flip-flops
- h. The purpose of the clock input- to a flip flop is to

5/1/12 Code: A-20

		(A) Clear the device				
		(B) sell-the device				
		(C) always cause the out put to c	_			
		(D) cause the out to change the s	tates only after both the in	put change.		
	i.	An asynchronous counter differs	from a synchronous counte	er in		
	1.	(A) the number of states in its sec	-	,, III		
		(B) the method of clocking	1001100			
		(C) the type of flip-flop used				
		() 31 1 1	(D) the value of the	modulus.		
		A 21.056 11 1				
	J.	A memory with 256 addresses ha				
		(A) 256 address lines	(B) 6 address lines			
		(C) 4 address lines	(D) 8 address lines	i		
		Answer at	ny FIVE Questions out o	_	ns.	
			Each question carries	16 marks.		
Q.2	a.	Perform the following				
		(i) $(18.665)_{10} = (?)_{8}$		(ii) $(101011.011)_2$	$= (?)_{16}$	
				(iii) (ABC.DE) ₁₆	$=(?)_{10}$	(iv) $(763)_8$ =
		(?) ₁₆ (8)				
	b.	Explain parity method for error c	letection		(8)	
Q.3	a.	State and prove the De-Morgan	's Theorems		(8)	
		b. use a Karnaugh map to red	uga tha fallowing avprassi	ions and realize the	finations using	minimum numbar at
		NAND gates.	uce the following expressi	ions and realize the	iunctions using	
		(i) + D +	ABCD + ABC			
		(ii) AB + A C + ABC	пысь тыс		(8)	
		(II) AD A C ADC			(0)	
Q.4	a.	Explain the following:				
		(i) D flip flop	(ii) SR flip flop		(8)	
	1	b. Explain how flip flops can be	used to store parallel data	a. Explain the set-up		me in a flip flop.
Q.5	a.	Perform the following subtraction (i) 15 – 23 (ii) 1	n by 2's complement syste. 32 – 18	m	(6)	
	b.	Represent $(59)_{10}$ and $(38)_{10}$ in 1	•	ddition. Verify the verting back to decim	nal. (6)	
	c.	Show how 2's complement met explain the same.	hod of subtraction can be	performed by using	IC 7483 (par	allel adder) and
Q.6		a. Draw the logic diagram of IC	74293 and show that h	now this counter car	n be used as m	odulus -12 counter.

5/1/12 Code: A-20

	b.	Design a 4-bit binary counter.	(8)
Q.7	a.	Design a full adder by using 4: 1 multiplexer.	(8)
	b.	Explain how a de multiplexer is converted into decoder.	(4)
	c.	Design a 1 – bit comparator.	(4)
Q.8	a.	Draw the circuit diagram of a 4- bit Johnson counter and explain the operation with merits and demerits. (8)	with neat waveform. Also mention its
	b.	Explain IC 74165, parallel in/ serial out shift register with its logic diagram.	(8)
Q.9	a.	Define these terms (i) Access time. (ii) Read only Memory. (iii) Elastic memory devices. (iv) SRAM and DRAM.	(8)
	b.	With neat diagram explain Intel 2864 EEPROM.	(8)