Register Number

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.Arch
Title of the Paper: Mathematics – I
Sub. Code: 621101(2006/07/08/09)
Date: 06/12/2010

Max. Marks: 80 Time: 3 Hours Session: FN

(8 X 4 = 32)

PART - A Answer ALL the Questions

- 1. State Cayley Hamilton theorem for matrices.
- 2. Find the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$.

3. Evaluate:
$$\int_{1}^{2} \int_{0}^{x} \frac{dxdy}{x^{2} + y^{2}}$$

4. Evaluate: $\iint_{R} dxdy$ over the region bounded by y = 0, x = 0, x+y = 1.

5. Solve
$$\frac{d^2 y}{dt^2} + \frac{dy}{dt} + y = \cosh 2t$$
.

- 6. Reduce the differential equation $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 0$ into differential equation with constant coefficients.
- 7. Find the direction cosines of the line joining points (1,-2,3) and (2,-3,4).
- 8. Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 3x + y + z = 7.

- PART B $(4 \times 12 = 48)$ Answer All the Questions 9. Verify Cayley Hamilton theorem for $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ Hence find A^{-1} .
- (or) 10. Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 - 12xy + 4xz - 8yz$ to a canonical form by orthogonal reduction.
- 11. If $I_n = \int x^n e^{-x} dx$, *n* being positive integer, Prove that $I_n = -x^n e^{-x} + n l_{n-1}$ Hence show that $\int_0^{\infty} x^n e^{-x} dx = n!$ (or) 12. Evaluate: $\int_{-\infty}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx$
- 13. Change the order of integration and evaluate: $\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dx \, dy$

(or)

14. Evaluate $\int \int \int \frac{dxdydz}{(x+y+z+1)^3}$ taken over the volume bounded by the planes x = 0, y = 0, z = 0, x + y + z = 1.

15. Solve
$$(3x+1)^2 \frac{d^2 y}{dx^2} + (3x+1)\frac{dy}{dx} + y = 6x.$$

(or)

16. Solve by the method of variation of parameters $\frac{d^2 y}{dx^2} + y = x \sin x$.