
SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act,1956)
Course \& Branch :B.Arch - ARCH
Title of the Paper :Mathematics - I
Sub. Code :621101
Date :25/05/2011

Max. Marks :80
Time: 3 Hours
Session :FN

$$
\text { PART }-\mathrm{A} \quad(8 \times 4=32)
$$

Answer ALL the Questions

1. Find the eigen values of $4 A^{-1}+3 A+2 I$, if $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 4\end{array}\right)$
2. If the eigen values of $\mathrm{A}=\left(\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right)$ are $-3,-3$ and 5, find the corresponding eigen vectors.
3. Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}$
4. Evaluate: $\int_{0}^{\frac{\pi}{4}} \tan ^{5} x d x$
5. Find the Particular Integral of $\frac{d^{2} y}{d x^{2}}+y=\sin 3 x \cos 2 x$.
6. Solve: $\left(D^{4}+D^{2}+1\right) y=0$
7. Find the equation of the plane through the origin and containing the line $\frac{x-1}{5}=\frac{y-2}{4}=\frac{z-3}{5}$.
8. Find the angle between the straight lines whose direction cosines are given by the relations $31+m+5 n=0$ and $6 m n+2 n l+51 n=0$.
PART - B

$$
(4 \times 12=48)
$$

Answer All the Questions
9. Verify Cayley-Hamilton theorem for $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right)$ and hence evaluate $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}=5 A^{3}-8 A^{2}+2 A-I$.
(or)
10. Reduce the Quadratic form $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{1}$ to canonical form and find the corresponding linear transformation. Also find the index and signature.
11. Change the order of the integration and hence evaluate $\int_{0}^{1} \int_{x^{2}}^{x}\left(x^{2}+y^{2}\right)^{\frac{-1}{2}} d y d x$.
(or)
12. Calculate the volume of the solid bounded by the following surfaces: $\mathrm{z}=0, \mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x}+\mathrm{y}+\mathrm{z}=3$.
13. Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$ by variation of parameters method. (or)
14. Solve: $\left(1+\mathrm{x}^{2}\right) \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$
15. Find the length of the shortest distance between the lines $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and also the equations of the line of shortest distance.
(or)
16. Find the equation to the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-4 x-y+3 z+12=0,2 x+3 y-7 z=10$ and touch the plane $\mathrm{x}-2 \mathrm{y}+2 \mathrm{z}=1$.

