SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.Arch
Title of the paper: Mathematics - I
Semester: I
Sub.Code: 621101(2006-07-08)
Date: 14-05-2009

Max.Marks: 80
Time: 3 Hours
Session: FN

$$
\text { PART }-\mathrm{A} \quad(8 \times 4=32)
$$

Answer ALL the Questions

1. If $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$, write down the sum of the eigen values of A and product of the eigen values of A .
2. Use Cayley-Hamilton theorem to find the inverse of $A=\left(\begin{array}{ll}7 & 3 \\ 2 & 6\end{array}\right)$.
3. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{6} x d x$.
4. Change the order of integration in $\int_{0}^{1} \int_{0}^{2 \sqrt{x}} f(x, y) d y d x$
5. Solve the P.I. of $\left(D^{2}-2 D+5\right) y=e^{x} \sin 2 x$.
6. Solve $\left(D^{2}-4 D+4\right) y=0$.
7. Find the equation of the plane which passes through the points A $(0,1,3) \mathrm{B}(1,0,-4) \mathrm{C}(1,1,-1)$
8. Find the equation of the sphere whose centre is $(2,-3,4)$ and radius 5 .

$$
\begin{gathered}
\text { PART - B } \\
\text { Answer All the Questions }
\end{gathered}
$$

9. Reduce the quadratic form $2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}-4 x_{2} x_{3}$ to canonical form by orthogonal reduction. Find the nature of the quadratic form.

(or)

10. (a) Using Cayley-Hamilton theorem to find the inverse of the matrix $A=\left(\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right)$
(b) Diagonalise the matrix $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right)$ by means of orthogonal transformation.
11. (a) Change the order of integration and hence evaluate it $\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{2 \sqrt{x}} d y d x$
(b) Evaluate $\int_{0}^{1} \int_{0}^{1-x 1-x-y} \int_{0}^{r y} \frac{d z d y d x}{(x+y+z+1)^{3}}$
(or)
12. (a) Drive the Reduction formula $\int \sin ^{n} x d x$.
(b) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x}{\left(\sin ^{n} x+\cos ^{n} x\right)} d x$
13. (a) Solve $\left(D^{2}+5 D+4\right) y=e^{-x} \sin 2 x$.
(b) Solve $\left(x^{2} D^{2}-2 x D-4\right) y=32(\log x)^{2}$.
(or)
14. (a) Solve by the method of variation of parameter
$y^{\prime \prime}+7 y^{\prime}-8 y=e^{2 x}$.
(b) Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin [\log (1+x)]$
15. (a) Show that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar and the equation of the plane containing them.
(b) Prove that the two spheres $x^{2}+y^{2}+z^{2}-2 x+4 y-4 z=0$, $x^{2}+y^{2}+z^{2}+10 x+2 z+10=0$ touch each other and find the coordinates of the point of contact.
(or)
16. (a) Find the shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$. Also find the equation of the line of the shortest distance.
(b) Find the equation of the plane passing through the points A $(2,5,-3), \mathrm{B}(-2,-3,5) \mathrm{C}(5,3,-3)$.
