SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.Arch

Title of the paper: Mathematics - I

Semester: I Max.Marks: 80 Sub.Code: 621101(2006-07-08) Time: 3 Hours

Date: 14-05-2009 Session: FN

PART - A
$$(8 \text{ X } 4 = 32)$$

Answer ALL the Questions

- 1. If $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$, write down the sum of the eigen values of A and product of the eigen values of A.
- 2. Use Cayley-Hamilton theorem to find the inverse of $A = \begin{pmatrix} 7 & 3 \\ 2 & 6 \end{pmatrix}$.
- 3. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^6 x \, dx.$
- 4. Change the order of integration in $\int_{0}^{1} \int_{0}^{2\sqrt{x}} f(x, y) dy dx$
- 5. Solve the P.I. of $(D^2 2D + 5) y = e^x \sin 2x$.
- 6. Solve $(D^2 4D + 4) y = 0$.
- 7. Find the equation of the plane which passes through the points A (0, 1, 3) B (1, 0, -4) C(1, 1, -1)

8. Find the equation of the sphere whose centre is (2, -3, 4) and radius 5.

PART – B
$$(5 \times 12 = 60)$$

Answer All the Questions

9. Reduce the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 4x_2x_3$ to canonical form by orthogonal reduction. Find the nature of the quadratic form.

10. (a) Using Cayley-Hamilton theorem to find the inverse of the

matrix
$$A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$

- (b) Diagonalise the matrix $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$ by means of orthogonal transformation.
- 11. (a) Change the order of integration and hence evaluate it $\int_{0}^{4} \int_{\frac{x^2}{4}}^{2\sqrt{x}} dy dx$

(b) Evaluate
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{dz dy dx}{(x+y+z+1)^{3}}$$
 (or)

12. (a) Drive the Reduction formula $\int \sin^n x dx$.

(b) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} x}{\left(\sin^{n} x + \cos^{n} x\right)} dx$$

13. (a) Solve
$$(D^2 + 5D + 4) y = e^{-x} \sin 2x$$
.

(b) Solve
$$(x^2D^2 - 2xD - 4) y = 32 (log x)^2$$
.

14. (a) Solve by the method of variation of parameter $y'' + 7y' - 8y = e^{2x}$.

(b) Solve
$$(1+x)^2 \frac{d^2 y}{dx^2} + (1+x) \frac{dy}{dx} + y = 2\sin[\log(1+x)]$$

- 15. (a) Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar and the equation of the plane containing them.
 - (b) Prove that the two spheres $x^2 + y^2 + z^2 2x + 4y 4z = 0$, $x^2 + y^2 + z^2 + 10x + 2z + 10 = 0$ touch each other and find the coordinates of the point of contact.

- 16. (a) Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$. Also find the equation of the line of the shortest distance.
 - (b) Find the equation of the plane passing through the points A (2, 5, -3), B (-2, -3, 5) C (5, 3, -3).