ICA

Previous Year Paper

JNU 2002

1.	If α and β are the root of $4x^2 + 3x + 7 = 0$, then the val	ue of	$\left(\frac{1}{\alpha}\right)$	+	$\left(\frac{1}{\beta}\right)$	is
----	--	-------	---------------------------------	---	--------------------------------	----

(a)
$$-\frac{3}{4}$$

(b)
$$-\frac{3}{7}$$

(c)
$$\frac{3}{7}$$

(d)
$$\frac{4}{7}$$

2. A probability distribution must possess

(a) mean

(b) mode

(c) moment generation function

(d) distribution function

The coefficient of x^2 in the expansion of e^{3x+4} is 3.

(a)
$$\frac{9e^2}{2}$$

(b)
$$\frac{9e^4}{2}$$
 (c) $\frac{3e^4}{2}$

(c)
$$\frac{3e^4}{2}$$

(d)
$$\frac{3e^2}{2}$$

The medians of a triangle meet at (0, -3). While its two vertices are (-1, 4) and (5, 2), the third vertex is 4.

$$(d) (-4, -15)$$

The value of $(1+i)^4 \left(1+\frac{1}{i}\right)^4$ is **5**.

$$(b) - 12$$

$$(d) - 16$$

Let f be a one-one function with domain $\{a, b, c\}$ and range $\{x, y, z\}$. If f(a) = y, then which of the 6. following is true?

(a)
$$f(b) = x$$
, $f^{-1}(z) = a$

(b)
$$f(b) = z$$
, $f^{-1}(v) = c$

(c)
$$f(c) = z$$
, $f^{-1}(x) = b$

(d)
$$f(c) = x$$
, $f^{-1}(x) = b$

In a Poisson distribution 7.

- (a) mean and variance are equal
- (b) mean is greater than variance
- (c) mean is smaller than variance
- (d) no relation between mean and variance

The vector $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$, when expressed as a single vector product is 8.

(a)
$$(\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{a}}) \times (\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}})$$

(a)
$$(\overrightarrow{c} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{b})$$
 (b) $(\overrightarrow{b} + \overrightarrow{a}) \times (\overrightarrow{c} + \overrightarrow{a})$ (c) $(\overrightarrow{a} - \overrightarrow{b}) \times (\overrightarrow{c} - \overrightarrow{a})$ (d) $(\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{a})$

(c)
$$(\overrightarrow{a} - \overrightarrow{b}) \times (\overrightarrow{c} - \overrightarrow{a})$$

(d)
$$(\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}) \times (\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{a}})$$

If *A* and *B* are two, events, the probability that exactly one of them occurs is 9.

(a)
$$P(A) + P(B) - 2P(A \cap B)$$

(b)
$$P(A) + P(B) - P(A \cap B)$$

(c)
$$P(A^C) + P(B^C) - 2P(A^C \cap B^C)$$

(d)
$$P(A \cap B^C) + P(A^C \cap C)$$

- **10**. Special software to create a job queue is called a/an
 - (a) driver
- (b) spooler
- (c) interpreter
- (d) linkage editor

- Which of the following is incorrect? 11.

- (a) $|a+b| \le |a| + |b|$ (b) $|a-b| \le |a| + |b|$ (c) $|a-b| \le |a| |b|$ (d) $|a-b| = 0 \Leftrightarrow a = b$
- If $p^2 + q^2 = 1$ and $X = (3p 4p^3)^2 + (3q 4q^3)^2$, then the value of <u>x</u> is **12**.

- (d) 12
- (a) 1 (b) 3 (c) 6

 Let $A_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then which of the following is incorrect? **13**.
 - (a) $A_{\alpha} A_{\beta} \neq A_{\beta} A_{\alpha}$
- (b) $A_{\alpha} A_{\beta} = A_{\alpha + \beta}$
- (c) $A_{\alpha}A_{-\alpha} = I$
- $(d)(A_{\alpha})^n = A_{n\alpha}$

- **14**. must be applied to access an element of a stack
- (b) Pop
- (c) Push
- (d) Exit

- **15**. In the following code fragment
 - i = 0;
 - while (.....)
 - {printf ("hello\n");
 - i + +;
 - }

the condition for the while loop to execute 20 times is

- (b) i < =20
- (c) !i < 20
- (d) i = 20
- Which of the following strings does not contain the pattern recognized by the given pattern matching 16. graph?

- (a) aabba
- (b) aaabbbbaaa
- (c) abaabbaaabbb
- (d) abaabaaabbb
- Two towns A and B are 60 km apart. A school is to be built to serve 150 students in town A and 50 **17**. students in town B. If the total distance to be travelled by all 200 students is to be as small as possible, then the school should be built at
 - (a) town A

(b) town B

(c) 45 km from town B

- (d) 45 km from town A
- The value of $\int_{0}^{\pi/4} \frac{\sin x + \cos x}{25 + 144 \sin 2x} dx$ is **18**.
 - (a) $\frac{1}{78} \log_e \frac{1}{5}$ (b) $\frac{1}{156} \log_e 5$ (c) $\frac{1}{78} \log_e 5$
- (d) None of these
- The equation of the latus rectum of the parabola $y^2 + 4ax = 0$ is **19**.
 - (a) y = a
- (b) v = -a
- (c) x = a
- (d) x = -a

20. The following is

(a) Heap

(b) Binary search tree

(c) Complete binary tree

(d) None of these

21 .	The are	The area of the triangle having the vertices $(4, 6)$, $(x, 4)$ $(6, 2)$ is 10 sq units. The value of x is						
	(a) 0		(b) 1		(c) 2	(d) None of these		
22 .	Turnar	ound time is						
	(a) The	e time a progran	n waits befor	re execution	starts			
	(b) The	e start time						
	(c) The	e execution time	е					
	(d) The	e time between	start and the	e end of the	program			
23 .	The an	gle between the	tangents fro	om the poin	t (4, 3) to the circle x	$x^2 + y^2 - 2x - 2y = 0$ is		
	(a) $\frac{\pi}{2}$		(b) $\frac{\pi}{3}$		(c) $\frac{\pi}{4}$	(d) None of these		
24.		correct pair ?				's complements. Which of the following		
		Decimal No.		complement				
	(a)	7392		2608				
	(b)	3754		6264				
	(c)	81.75		19.25				
	(d)	34.56		65.44				
25 .		_		omputer : :]	Knowledge :			
	(a) Stor	0	(b) Data	_	(c) Analysis	(d) Synthesis		
26 .	The lea	ist integer <i>n</i> suc	sh that $7'' > 7''$	10°, given l	og $343 = 2.5353$, is			
	(a) 3		(b) 4		(c) 5	(d) 6		
27.	The val				4	$\sin^{-1} x \le \frac{\pi}{2} \text{ at } x = \frac{1}{3}, \text{ is}$		
	(a) $\frac{-2}{\sqrt{3}}$		(b) $-2.\sqrt{3}$		(c) $\frac{2\sqrt{2}}{\sqrt{3}}$	$(d) - \frac{2\sqrt{2}}{3}$		
28 .	Which	Which of the following transmission systems provide the highest data rate to an individual device ?						
	(a) Computer bus				(b) Voice band mo	dem		
	(c) Tele	ephone line			(d) Leased line			
29 .						am outdoors; $S: I$ am outdoors only if tives, S can be written as		
	(a) $\sim P$	$\rightarrow Q$	(b) $R \to Q$		(c) $\sim R \to Q$	(d) $R \rightarrow \sim Q$		
30 .	Consid	er the production	on rules of a	grammar G	, S \rightarrow AA, A \rightarrow aa, I	$B \to bb$. The language generated by G is		
	(a) $L(G)$	$= \{aaaa, bbbb,$	abba, baab}		(b) $L(G) = \{abab, b\}$	aba, aaba, abaa}		
	(c) $L(G) = \{aaaa, aabb, bbaa, bbbb\}$ (d) $L(G) = \{aaaa, abba, bbaa, bbbb\}$							
31.	If the c	ube roots of un	ity are 1, ω,	ω^2 , then the	e roots of the equation	on $(x-1)^3 + 8 = 0$ are		
	(a)f-1, 1	$1+2\omega,1+2\omega^2$	(b) -1 , $1-2$	2ω , $1-2\omega^2$	(c) - 1, -1, -1	(d) None of these		
32.	If $y = 1$	$\log_e x$ and n is a	n positive int	teger, then $\frac{a}{a}$	$\frac{d^n y}{dx^n}$ is equal to			
	$(a)\left(-\frac{e}{x}\right)$		(b) $(n-1)x$.– n	(c) $(n-1)! x^{-n}$	(d) $(-1)^{n-1}(n-1)! x^{-n}$		
33.	If $\cos \theta$	$+\sin\theta = \sqrt{2}\cos\theta$	s θ, then cos	$\theta - \sin \theta$ is θ	equal to			
	(a) $\sqrt{2}$ s		(b) $\sqrt{2}\sec\theta$		(c) $\frac{\sin \theta}{\sqrt{2}}$	(d) $\frac{\cos \theta}{\sqrt{2}}$		

34 .	The value of $\int_{-3}^{+3} x dx$	ris		
	(a) 3	(b) 9	(c) 18	(d) None of these
35 .	Third generation com	nputers		
	(a) were the first to us	se built-in error detecting	devices	
		stead of vacuum tubes		
	(c) were the first to us			
	(d) None of the above			
36.	If $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$, $\alpha \neq$			
	(a) $\overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{c}} + \lambda \overrightarrow{\mathbf{a}}$	(b) $\overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{a}} + \lambda \overrightarrow{\mathbf{b}}$	(c) $\overrightarrow{\mathbf{a}} = \overrightarrow{\mathbf{b}} + \lambda \overrightarrow{\mathbf{c}}$	(d) None of these
37 .	The primary memory	of a personal computer	consists of	
	(a) ROM only		(b) RAM only	
	(c) Both RAM and RC		(d) Memory module	
38.	•	$=c$ has two solutions θ_1 a		
	(a) $\frac{b}{a}$	(b) $\frac{a}{b}$	(c) $\frac{c-a}{b}$	(d) $\frac{D}{a+c}$
39 .	A number is chosen	D	B	9} and {1, 2, 3, 4, 5, 6, 7, 8, 9}. If p ₁
				the probability that their sum be 8 ,
		(b) $\frac{137}{729}$	(c) $\frac{16}{81}$	(d) $\frac{137}{81}$
	729	729	81	81
40.	What should be the r	number opposite to 3?	3 1 5 2 3	
	(a) 1	(b) 6	(c) 5	(d) 4
41.	If $\sqrt{(p+1)} - \sqrt{(p-1)}$	* *	(-) -	(-) -
	(a) natural number	(b) integer	(c) rational	(d) None of these
42 .		of dividing 15 objects int	to groups of 7, 5, 3 respe	ectively, is
	(a) $\frac{15!}{7!5! \ 3!}$	(b) $\frac{15!}{7! \ 3!}$	(c) $\frac{15!}{7!}$	(d) 15!
		7. 0.	7!	
40	One of the factors of	$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix}$ is		
43 .	One of the factors of	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
			() 0	(1) 0 0
4.4	(a) $x + a$	(b) $x + 3a$	(c) $3x + a$	(d) 3x + 3a
44.	The greatest value of		1	1
	(a) - 1	(b) 1	(c) $-\frac{1}{2}$	(d) $\frac{1}{2}$
45 .	Which of the following	ng Boolean expression is	true ?	
	(a) $2 * 2 + 3 = 10$		(b) (2 * 4) and not (4 *	3)
	(c) (5 * 6) or 3 div 3 =		(d) -7 * 2 + 2 * 7 = 1	
46 .	If $r = r_1 - r_2 - r_3$, the			
	(a) Isosceles	(b) Acute angled	(c) Obtuse angled	(d) Right angled

47 .	The solution of the	differential equation (1	$+ x^2$) $dy/dx = (1 + y^2)$ is	;			
	(a) $y - x = 1 + xy$	(b) $y - x = 1 + 3xy$	(c) y - x = a(1 + xy)	(d) $y/x = (1 + xy)/a$			
48 .	The locus of the po	oint such that the ratio of	f its distance from two g	given points is constant $k \neq 1$ is a			
	(a) straight line	(b) circle	(c) parabola	(d) ellipse			
49 .	Multiplication of 4	7 ₈ by 52 ₈ is					
	(a) 3144 ₈	(b) 4147 ₈	(c) 3184 ₈	(d) 3146 ₈			
50 .	If SHIP is written a	s VKLS, then PENCIL w	ill be written as				
	(a) RGPEKN	(b) SHQFLO	(c) SHFQLO	(d) RGPKEN			
51 .	If the sum of the ro	oot of $px^2 + qx + r = 0$ is	equal to the sum of the	their squares, then q^2 is equal to			
	(a) $r(p-2q)$	(b) $r(2q - p)$	(c) $p(q-2r)$	(d) $p(2r-q)$			
52 .	What will be the va	alue of \underline{x} and y after exec	cution of the following (C language) statement ?			
		-	x = n + +; y = x;				
	(a) 6, 5	(b) 5, 4	(c) 6, 6	(d) 5, 5			
53 .	Which of the follow	ving is true for testing ar	nd debugging ?				
		for logical error in the p	rograms, while debuggi	ng is a process of correcting those error			
	in the program						
		•	program while debuggin	g corrects those errors in the program			
		endent of debugging					
	(d) All of the above						
54 .	_		_	a subtended by the tree on the opposite			
	river. Angle α is	ngie subtended by it wi	ien moves away a distar	nce twice as much as the breadth of the			
	_	π	π	π			
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{12}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$			
55 .	If $\log 2$, $\log (2^x - 1)$	and $\log (2^x + 3)$ are in A	P, then the value of <i>x</i> is	given by			
	(a) $\log_2 5$	(b) log ₅ 2	$(c) \log_3 5$	(d) $\log_5 3$			
56 .	. , 02	n of the arithmetic expre					
	(a) * $a/+cda$	-		(d) $acd + a/*$			
5 7			• •	. ,			
57 .	The function $f(x)$	$=\frac{X- X }{X} \qquad (X\neq 0)$					
		$=0 \qquad (x=0)$					
	is						
	(a) continuous now			ywhere except at x = 0			
	(c) continuous ever	•	· · · ·	(d) cannot say anything			
58 .		All the values of x that satisfy the inequalities $x^2 - 3x + 2 > 0$ and $x^2 - 3x - 4 \le 0$ are given by $-1 \le x < 0$.					
	and $\dots < x \le 4$						
	(a) 0, 1 respectively		(b) 1, 0 respectively				
	(c) 1, 2 respectively	7	(d) 0, 2 respectively	7			
59 .	I/O redirection (a) implies changing the name of a file						
		ed to use an existing file	as input for a program				
	(c) implies connec	ting 2 program through a					
	(d) None of the abo						
60 .	If $f(x) = x^2 - 2x + 2$, then which of the following is true?						
	(a) <i>f</i> (<i>x</i>) has a maxim		(b) $f(x)$ has a maximum				
	(c) $f(x)$ has a minimum.	num at x = 1	(d) $f(x)$ has no max	kima or minima			
	Λ			Questions Paper (JNU 2002) 5			
Upti	Imum Notes						

61 .	If $x = \frac{a(1-t^2)}{(1+t^2)}$ and	$y = \frac{2bt}{(1+t^2)}, \text{ then } dy$	y / dx is				
	(a) $\frac{2b}{a}$	(b) $\frac{-2b}{a}$	(c) $\frac{b}{a}$	(d) $\frac{-b}{a}$			
62 .	The locus of the mi			which subtends a right angle at the origin			
			(c) $x^2 + y^2 = 2$	(d) $x^2 + y^2 = 0$			
63 .	The equation $x - \frac{1}{(x + 1)^n}$	$\frac{2}{(x-1)} = 1 - \frac{2}{(x-1)}$ ha	S				
64.	(a) no rootsThe equations 3x +(a) infinite number(c) a unique solution	y + 2z = 3, 2x - 3y - 3	(c) two equal roo z = -3, $x + 2y + z = 4$ has (b) no solution (d) None of these	ave			
65 .	The value of $\lim_{x\to 0} \frac{ s }{ s }$	$\frac{\ln x}{x}$ is					
66.	(a) 1	(b) -1 er in the series 7, 11,	(c) ∞ , 17, 19, 23 is	(d) Does not exist			
	(a) 15	(b) 19	(c) 13	(d) 9			
67 .	If $x + y = \sin(x + y)$	(y) , then $\frac{dy}{dx}$ is					
	(a) 1	(b) - 1	$(c) 1 - \cos(x + y)$	$(d) 1 + \cos(x + y)$			
68 .	If $ax^2 + bx + c = 0$, where a, b, c are all positive, then both roots of the equation will be						
	(a) real and positive (c) having negative		(b) real and negat (d) None of these	ive			
69 .	=	ree coplanar vectors,					
	(a) $\overrightarrow{\mathbf{a}} \cdot (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) = 0$	(b) $\overrightarrow{\mathbf{a}} \cdot (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) = 1$	(c) $\overrightarrow{\mathbf{a}} \cdot (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) = \overrightarrow{\mathbf{a}}$	$(\mathbf{d}) \stackrel{\rightarrow}{\mathbf{a}} \cdot (\stackrel{\rightarrow}{\mathbf{b}} \times \stackrel{\rightarrow}{\mathbf{c}}) = \stackrel{\rightarrow}{\mathbf{b}}$			
70 .	The probability tha	t a non-leap year sho	ould have 53 Sunday is				
	(a) $\frac{53}{365}$	(b) $\frac{52}{365}$	(c) $\frac{6}{7}$	(d) $\frac{1}{7}$			
71.	If $\frac{\sin(x+y)}{\sin(x-y)} = \frac{p+y}{p-y}$	$\frac{q}{q}$, then $\frac{\tan x}{\tan y}$ is equal	al to				
	(a) $\frac{q}{p}$	(b) $\frac{p}{q}$	(c) <i>pq</i>	(d) $\frac{1}{pq}$			
72 .	For a frequency distribution of marks in Mathematics for 100 students, the average was found to be 80. Later						
	on it was discovered (a) 80.36	d that 48 was misread (b) 79.36	d as 84. The correct mean (c) 79.64	(d) 80.64			
73 .	` '	` '	cients of 4th and 13th te				
	(a) 15	(b) 17	(c) 9	(d) Cannot be determined			
74 .	If a, b, c are real nu	imbers such that a^2	$+b^2 + c^2 = 1$, then $ab + b$	$c + ca > \dots$			
	(a) $\frac{1}{2}$	(b) $-\frac{1}{2}$	(c) 2	(d) -2			
75 .		ing program segmen	t:				
	j = 2; while $(i % j)j = j + 1;$.)					
	if $(j < i)$ printf ("%d" For a given $i >= 2$, t	, /); this program segmen [:]	t prints <i>i</i> only if				
	(a) i is a prime	THE PROGRAM SOCIATION	(b) <i>j</i> does not divi	de i			
	(c) j is odd		(d) i is not a prime				

76 .	The average time nec	essary for the correct sec	tor of a disk to arrive at	the read-write head is
	(a) Down time	(b) Seek time	(c) Rotational delay	(d) Access time
77.	Zurich, Mumbai, De assigning values to a	elhi, Arlington, Newton variable START and an l. If i is the index of CI	, Washington, Rome, I array LINK, an alphabet	s, London, New York, Chennai, Koln, Bangkok, Amsterdam, Uppsala. On ical listing of cities with CITY, LINK mbai, then the values of START and
	(a) 9, 13	(b) 5, 14	(c) 12, 6	(d) 14, 10
78.	What is the next figur	re ?		
	(a) =	(b)	(c)	(d)
79 .		$+y^2 = 14x$. The point x	P(6, -7) is	
	(a) on the circle	(b) in the circle	(c) outside the circle	(d) None of these
80.	If a population grows (a) 20	at the rate of 5% per yea (b) 20 log 2	ar, it will double (in year (c) 2 log 2	rs) after (d) 22
81.	` '	rectangular hyperbola is	, ,	(u) 22
				(d) 2
82.	The only integral root	(b) $\sqrt{2}$ at of the equation $\begin{vmatrix} 2-y \\ 2 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 5 - y & 6 \\ 4 & 10 - y \end{vmatrix} = 0$, is	
	(a) $y = 0$	(b) $y = 1$	(c) $y = 2$	(d) $y = 3$
83.	The domain of the fur	nction $y = [(1 / \log_{10}(1 -$	(x))] + $\sqrt{x+2}$, is	
	(a) [-3, -2] excluding (c) [-2, 1] excluding ()	(b) [0, 1] excluding 0.5 (d) None of these	
84 .		quation $ z = z + 1 + 2i$ is	. 3	3.
	(a) $\frac{3}{2} - 2i$	(b) $3 - 2i$	(c) $\frac{3}{2} + 2i$	(d) $2 - \frac{1}{2}$
85.	obtaining two heads a	hat the probability of h and three tails with head (b) 3 ³ / 5 ⁴	s occurring in succession	
86.				cometric mean G of these two numbers
	(a) 3, 6	$A + G^2 = 27$. The two num (b) 4, 5	nbers are (c) 2, 7	(d) None of these
87.	What is the result of the int f (int & x) { $x + +;$ return $x;$	the following program ?		
	void main ()			
	int result, $x = 5$; result = $f(x) * f(x)$; printf (''%d'', result);			
	} (a) 36	(b) 42	(c) 30	(d) 25
	(4) 00	(12) 14	(0) 00	
Optin	num Notes			Questions Paper (JNU 2002)
	140162			

88.	(a) A line printer u (b) A terminal use	wing is an example of a used to print the output d to enter data to a runr orage device in a virtual	of a number of jobs ning program					
89.	If $f(x) = (\cos x + i)$	$\sin x)\left(\cos 3x + i\sin 3x\right)$	$\cos \{(2n-1) x + i \sin (c) - n^2 f(x)\}$					
90.	In an ellipse with	eccentricity $\frac{1}{\sqrt{3}}$ the equa	ation of the diameter co	njugate to the diameter $3y = -2x$ is				
	(a) $3y = x$	(b) $y = 3x$	(c) $y = -x$	(d) $y = x$				
91.	The equation $x + \epsilon$	$e^x = 0$ has						
	(a) no real root		(b) two real roots					
	(c) one real negative		(d) one real positiv	ve root				
92.	The derivative of s	$\sin^{-1} \frac{(1-x^2)}{(1+x)^2}$ w r t sin ⁻¹	$\frac{2x}{1+x^2}$ is					
	(a) - 1	(b) 0	(c) <i>x</i>	(d) 1/x				
93.	A square is inscri The one vertex of		-2x + 4y + 3 = 0. Its si	ides are parallel to the coordinates axes				
		(b) $(1 - \sqrt{2}, -2)$	(c) $(1, -2 + \sqrt{2})$	(d) None of these				
94.	15 coupons are	numbered 1, 2, 15. probability that the larg	Seven coupons are se	elected at random, one at a time, with n a selected coupon is 9, is (d) None of these				
95 .		The 7th term of the series 3, 9, 20, 38, 65, is						
00.	(a) 154	(b) 165	(c) 175	(d) 184				
96.	• •	` ,	` '	n circumscribed in a circle are in				
	(a) GP	(b) HP	(c) AP	(d) None of these				
97 .	The root of $x^3 - 2x - 5 = 0$, correct to three decimal places by using Newton-Raphson method is							
	(a) 1.0404	(b) 2.0946	(c) 1.7321	(d) 0.7011				
98.	Let A and B be any	y two arbitrary events, tl	hen, which of the follow	ving is true ?				
	(a) $P(A \cup B) = P(A) + P(B)$ (b) $P(A \cap B) = P(A)P(B)$							
	(c) $P(A / B) = P(A \cap B)P(B)$ (d) $P(A \cup B) \le P(A) + P(B)$			A) + P(B)				
99.	In a vectored interrupt (a) The branch address is assigned to a fixed location in memory (b) The branch address is obtained from a register in the process (c) The interrupting source supplied the branch information to the processor through an interrupt vector (d) All of the above							
100.	A relation over a set $S = \{3, 6, 9, 12\}$ is defined by $\{\{3, 3\}, \{6, 6\}, \{9, 9\}, \{12, 12\}, \{6, 12\}, \{3, 9\}, \{3, 12\}\}$ $\{3, 6\}\}$. Which of the following properties hold this relation?							
	(a) Reflexive only			(b) Reflexive and symmetric				
	(c) Reflexive, symmetric and transitive (d) Reflexive and transitive							
101 .	Initialization cannot be part of the definition if the storage class of an array is							
	(a) static		(b) external					
	(c) automatic		(d) None of these					
102 .	The area of the tri	angular region whose si	des have the equations y	y = 2x + 1, $y = 3x + 1$ and $x = 4$ is				
	(a) 9	(b) 7	(c) 10	(d) 8				
	(a) 9	(b) 7	(c) 10	(d) 8				

 $\left| \sin^2 A \cot A \right|$ If A, B, C are angles of a triangle then the value of $\begin{vmatrix} \sin^2 B & \cot B \end{vmatrix}$ is **103**. $\sin^2 C \cot C$ 1

(a) 0

(b) 1

The value of $4 \{ {}^nC_1 + 4 . {}^nC_2 + 4^2 . {}^nC_3 + ... + 4^{n-1} \}$ is **104**.

- (b) $5^n + 1$

(d) $5^n - 1$

If λ is an eigenvalue of a matrix A, then it is a solution to **105**.

(a) $(A - \lambda I) = 0$

(b) $\det |A - \lambda I| = 0$

(c) $\det |A - I| = 0$

(d) $\det |A - \lambda| = 0$

Zero has two representations in **106**.

(a) Sign magnitude

(b) 1's complement

(c) 2's complement

(d) None of these

Let A be a two dimensional array of 10 rows and 12 columns. If the array is stored in row-major order then **107**. the address of the location A[i][j] is

- (a) 12j + i + 1
- (b) 12i + j + 1
- (c) 12j + i
- (d) 12i + j

108. The number of squares in the figure given below is

(b) 21

(c) 24

(d) 26

If (n - m) is odd, then $\int_0^{\pi} \cos mx \sin nx \, dx$ is **109**.

- (a) $\frac{2n}{(n^2 m^2)}$ (b) $\frac{2n}{(m^2 n^2)}$ (c) $\frac{2m}{(n^2 m^2)}$
- (d) 0

 $^{n-1}C_3 + ^{n-1}C_4 > ^nC_3$ if $n > \dots$ **110**.

(d) 8

Let $\tan \alpha = \frac{m}{(m+1)}$ and $\tan \beta = \frac{1}{(2m+1)}$, then the value of $(\alpha + \beta)$ is 111.

For a binomial distribution, the mean is $\frac{15}{4}$ and the variance is $\frac{15}{16}$. The value of p is **112**.

(a) $\frac{1}{2}$ (b) $\frac{15}{16}$ (c) $\frac{1}{4}$ (d) If the roots of $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c$ is **113**.

(d) None of these

(a) 0 (b) 1 (c) 2

If $A = \begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix}$ and $B = \begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$ then 114.

(a) A = 4B

(b) A = 2B

(c) A = B

(d) None of these

- The differential equation of all circles passing through the origin and having their centres on the *y*-axis is (a) $(x^2 + y^2) \frac{dy}{dx} = 2xy$ (b) $(x^2 y^2) \frac{dy}{dx} = 2xy$ 115.

(c) $dy/dx = 2xy(x^2 + y^2)$

- (d) $\frac{dy}{dx} = 2xy(x^2 y^2)$
- The output of the following program is 116.

```
void incr ()
static int i;
printf (''%d'', + + i);
void decr()
static int i;
printf ("%d", i--);
void main ()
incr (); decr(); incr();
(a) 111
```

(b) 101

(c) 102

(d) garbage

- If A, B, C are sets, then A (B C) is equivalent to 117.
 - (a) $(A B) \cup (A \cap C)$

(b) $(A - B) \cap (A - C)$

(c) $A - (B \cap C)$

- (d) $(A B) \cup (A C)$
- **118**. The default parameter passing mechanism in a C program
 - (a) call by reference

(b) call by value

(c) call by value result

- (d) None of these
- The sum of the first n terms of the series $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2$ is $\frac{n(n+1)}{2}$, when n is even. 119.

- When *n* is odd, the sum will be
 (a) $n^2(n+1)$ (b) $\frac{n^2(n+1)}{2}$ (c) $\frac{n^2(n+1)^2}{4}$ (d) $\frac{n^2(n+1)}{16}$ The equation of the circle drawn with the focus of the parabola $(x-1)^2 - 8y = 0$ as its centre and touching **120**. the parabola at its vertex is

(a)
$$x^2 + y^2 - 2x - 4y + 1 = 0$$

(b)
$$x^2 + y^2 - 2x - 4y = 0$$

(d) $x^2 + y^2 - 4y = 0$

(c)
$$x^2 + y^2 - 4y + 1 = 0$$

(d)
$$x^2 + y^2 - 4y = 0$$