Total No. of Questions-12]
[Total No. of Printed Pages-4+1 [3762]-51
S.E. (E\&TC) (I Sem.) EXAMINATION, 2010 SIGNALS AND SYSTEMS
(2003 COURSE)
Time : Three Hours
N.B. :- (i) Answer three questions from Section I and three questions from Section II.
(ii) Answers to the two Sections should be witto in separate answer-books.
(iii) Neat diagrams must be draw wherever necessary.
(iv) Figures to the right ind fuld marks.
(v) Use of logarithmic tables, sli ery, Mollier charts, electronic pocket calculator and steam tables is allowed.
(vi) Assume suitable data, innecessary.

SNCTION I

1. (a) Check whether the fowing systems are :
(i) memorylu
(ii) stable
(iii) causal
(iv) linea
(1) $4=x(t / 2)$
(2) $\quad(t)=x[2-t]$

$$
\begin{align*}
& y(t)=x(t) \cos 200 \pi t \\
& y[n]=x[n]-x[n-1] . \tag{8}
\end{align*}
$$

(b) Sketch the following signals to the scale :
(i) $x[n]=\sum_{k=-6}^{+6} \delta[k-n]$, where $\delta[n]$ is an impulse signa
(ii) $x[n]=\sin c\left[\frac{n}{4}\right]$ for $-4 \leq n \leq+4$.

Or
2. (a) Find even and odd components of the follong signals :
(1) $x(t)=\cos (t)+\sin (t)+\sin t$
(2) $x(t)=2 t^{2}-3 t+6$
(3) $\sin c(t)=x(t)$
(4) $x(t)=\sin \left(40 \pi t+\frac{\pi}{6}\right)$.
(b) Find whether the followingsignals are energy or power signals :
(1) $x[n]=a^{n} u[n]$ where $|x|>1$
(2) $x[n]=1+\cos \left[\frac{2}{2}\right]$

$$
\begin{equation*}
x(t)=e^{-a t}(t) \tag{3}
\end{equation*}
$$

3. (a) Determine whethe the following systems described by impulse response \longrightarrow
(i) $\quad h(t)=e^{-t} u(t+1)$
(ii) $(t)=e^{t} u(-t-1)$ ar table and causal.
hat is LTI system and its impulse response ? Explain how the impulse response is useful in finding out the LTI system output due to any arbitrary input signal.
4. (a) Find the convolution of two continuous functions :

$$
\begin{aligned}
& x(t)=e^{-|t|} \text { for all } t \\
& h(t)=A e^{-2 t} u(t)
\end{aligned}
$$

(b) State and prove any four properties of convolution of continuous time signal.
5. (a) State and prove time-shifting and convolution properties of Fourier transform.
(b) Find exponential Fourier series of direct dell [comb] function with period ' T_{0} ' and draw its spectra

Or
6. (a) Find continuous time Fourlansform of the following signals :
(1) $\quad x(t)=e^{-a t} u(t)$
(2) $x(t)=\sin$
$\omega_{c} t \quad u^{(\lambda)}$
Impulse response of L1 system is given by $n(t)=k \delta(t)$ and input $x(t)=u(t)$. Find output $y(t)$ and $y(f)$. Also draw the input and or magnitude spectrum.

- SECTION II

7. (a) Find 0 laplace transform of the following signal with ReC :

$$
f(t)=e^{3 t} u(t)+e^{-t} u(t)
$$

(2) $f(t)=e^{-a t} \sin (b t)$.
(b) Find Inverse Laplace transform of the following signals using partial function expansion :

$$
\mathrm{X}(s)=\frac{s+3}{s(s+1)(s+2)}
$$

Or

8. (a) Determine bilateral Laplace transform and ROC for the following signal :
(i) $x(t)=u(t-2)$
(ii) $x(t)=\delta\left(t-t_{0}\right)$.
(b) State and prove any two propertiec of Laplace transform. [8]
9. (a) Find autocorrelation and PS or the following signal :

$$
\begin{equation*}
x(t)=5+4 \sin \left(10 \pi t+30^{\circ}\right) . \tag{12}
\end{equation*}
$$

(b) Determine energy spectral assity and prove relation between autocorrelation and ergy spectral density.

10. (a) State and keve Parseval's theorem.
(b) Find cros-correlation function of :

$$
x(t)=2 \mathrm{~A}^{-a t}
$$

$$
\begin{equation*}
y(t)=\mathrm{B} e^{-b t} \tag{12}
\end{equation*}
$$

11. (a) Whe the expression of CDF and PDF of a uniform random yariable and sketch the same and also illustrate an example of uniform random variable.
(b) A biased coin is loaded such that:

$$
P(H)=\frac{1+\varepsilon}{2} \text { with } 0<|\varepsilon|<1
$$

Show that probability of a match in two independent will be greater than $\frac{1}{2}$.

Or

