Total No. of Questions-12]

[Total No. of Printed Pages-4+1

S.E. (E&TC) (I Sem.) EXAMINATION, 2010 SIGNALS AND SYSTEMS (2003 COURSE)

Time : Three Hours

Maximum Marys 100

[3762]-51

N.B. :--

- Answer three questions from Section I and three questions (i)from Section II.
 - Answers to the two Sections should be written in separate (ii)answer-books.
 - Neat diagrams must be drawn wherever necessary. (iii)
 - (iv)Figures to the right indicate full marks.
 - Use of logarithmic tables, slife rule, Mollier charts, electronic (v)pocket calculator and steam tables is allowed.
 - Assume suitable data, if necessary. (vi)

- Check whether the following systems are : 1. (a)
 - (*i*) memoryle
 - (ii)stable
 - (iii) causal
 - (iv)linear

(1)
$$x(t) = x(t/2)$$

(2)
$$(t) = x[2 - t]$$

(2) $y(t) = x(t) \cos 200 \pi t$

$$y(t) = x(t) \cos 200 \ ht$$

 $y[n] = x[n] - x[n - 1].$

t

[8]

Sketch the following signals to the scale : *(b)* (i) $x[n] = \sum_{k=-6}^{+6} \delta[k-n]$, where $\delta[n]$ is an impulse signal (*ii*) $x[n] = \sin c \left[\frac{n}{4}\right]$ for $-4 \le n \le +4$. OrFind even and odd components of the follows g signals : (a) $x(t) = \cos(t) + \sin(t) + \sin t \cdot \cos(t)$ (1) $x(t) = 2t^2 - 3t + 6$ (2) $\sin c(t) = x(t)$ (3) $x(t) = \sin\left(40\pi t + \frac{\pi}{6}\right).$ (4) [8] Find whether the following signals are energy or power signals : (*b*) $x[n] = a^n u[n]$ where |x| > 1(1)(2) $x[n] = 1 + \cos \left| \frac{\pi}{2} \right|$ (3) $x(t) = e^{-at} x(t)$. [8] Determine whether the following systems described by impulse (a)response (;) -tu(t + 1)h(+)

$$(i) \quad h(t) = e^{t} \quad u(-t - 1)$$

$$(ii) \quad h(t) = e^{t} \quad u(-t - 1)$$

What is LTI system and its impulse response ? Explain how the impulse response is useful in finding out the LTI system output due to any arbitrary input signal. [8]

[8]

2

3.

2.

4. (a) Find the convolution of two continuous functions : $x(t) = e^{-|t|}$ for all t

Or

$$h(t) = Ae^{-2t} u(t).$$

- (b) State and prove any *four* properties of convolution of continuous time signal.
- 5. (a) State and prove time-shifting and convolution properties of Fourier transform. [10]
 - (b) Find exponential Fourier series of direct delta [comb] function with period "T₀" and draw its spectrum. [8]
 - (a) Find continuous time Fourier transform of the following signals :

Or

(1) $x(t) = e^{-at} u(t)$ (2) $x(t) = \sin \omega_c t u(t)$

6.

[12]

[8]

P.T.O.

(b) Impulse response of LTL system is given by $n(t) = k\delta(t)$ and input x(t) = u(t). Find output y(t) and y(f). Also draw the input and output magnitude spectrum. [6]

SECTION II

7. (a) Find the Laplace transform of the following signal with RQC :

3

$$f(t) = e^{3t} u(t) + e^{-t} u(t)$$

(2) $f(t) = e^{-at} \sin(bt).$

Find Inverse Laplace transform of the following signals using (b)partial function expansion : $\mathbf{X}(s) = \frac{s+3}{s(s+1)(s+2)}.$ Or(a)Determine bilateral Laplace transform and ROC for the following 8. signal : (i) x(t) = u(t - 2)(*ii*) $x(t) = \delta(t - t_0)$. [8] State and prove any two properties of Laplace transform. [8] *(b)* Find autocorrelation and PSD of the following signal : 9. (a) $x(t) = 5 + 4 \sin(10\pi t + 30^\circ).$ [12]Determine energy spectral density and prove relation between *(b)* autocorrelation and every spectral density. [6] Or State and prive Parseval's theorem. 10. (a)[6] Find cross-correlation function of : (b) $x(t) = Ae^{-at}$ $y(t) = Be^{-bt}$. [12] e the expression of CDF and PDF of a uniform random (a)11. variable and sketch the same and also illustrate an example of uniform random variable. [8]

4

(b) A biased coin is loaded such that :

$$P(H) = \frac{1+\varepsilon}{2}$$
 with $0 < |\varepsilon| < 1$

Show that probability of a match in two independent toss will be greater than $\frac{1}{2}$.

Or

12.

(a) State and prove sampling theorem in frequency domain. [8]
(b) An experiment consisting of observing the sum of the numbers showing up when two dice are thrown. Events A = (sum = 7), B = {8 < sum ≤ 11}, C = {10 < sum}. Draw Venn diagram and find :

[8]

- (i) P(A)
- (*ii*) P(B)
- (iii) P(C)
- $(iv) P(A \cap B)$
- (v) $P(A \cup B)$.