[4062]-151

S.E. (E&TC/Elex.) (First Semester) EXAMINATION, 2011

SIGNALS AND SYSTEMS

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answer three questions from Section I and three questions from Section II.
 - Answers to the two Sections should be written in separate (ii)answer-books. 9
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Your answers will be valued as a whole.
 - Assume suitable data, if necessary. (v)

SECTION I

1. (a)Sketch the following signal

$$x(t) = egin{cases} 5-t & 4 \leq t \leq 5 \ & 1 & -4 \leq t \leq 4 \ & t+5 & -5 \leq t \leq -4 \ & 0 & ext{otherwise} \end{cases}$$

Also determine total energy of signal x(t).

[8]

(b) Check whether the following systems are: [8]

- (i) Static/Dynamic
- (ii) Causal/Non-causal
- (iii) Stable/Unstable
- (iv) Time invarient/Time varient

(I)
$$y(t) = x(t + 10) + x^2(t)$$

(II)
$$y[n] = \frac{1}{3} \{x[n] + x[n-1] + x[n-2]\}.$$

Or

2. (a) Sketch the following signals: [8]

(i)
$$x(t) = -u(t + 3) + 2u(t + 1) - 2u(t - 1) + u(t - 3)$$

$$(ii) \quad x(t) = \sum_{k = -\infty}^{\infty} \delta(t - 3k)$$

$$(iii) \quad x[n] = \left(\frac{1}{3}\right)^n \cdot u[n]$$

(b) Determine whether the signals are periodic or non-periodic :

$$(i) x[n] = \cos^2\left(\frac{\pi}{8}n\right)$$

$$(ii)$$
 $x[t] = \cos\left(\frac{\pi}{3}t\right) + \sin\left(\frac{\pi}{4}t\right)$

Determine energy or power of signal

$$x(t) = 6 . e^{-j5t}$$

$$x[n] = \left(\frac{1}{2}\right)^n \cdot u[n].$$
 [8]

3. (*a*) Evaluate the convolution integral for input x(t) and impulse response h(t) shown in Fig. 1 and Fig. 2. [12]

Fig. 1

Fig. 2

(b) For each of the following impulse responses determine whether corresponding system is memoryless, causal and stable, justify answer. [6]

$$h(t) = e^{-2t} \cdot u(t).$$

$$Or$$

4. (a) Evaluate the convolution integral for input x(t) and impulse response h(t)

$$x(t) = \text{rect}(t)$$

$$h(t) = \text{rect}(t).$$
[8]

(b) Find the step response of the first order recurssive system

with impulse response
$$h[n] = \left(\frac{1}{3}\right)^n \cdot u[n]$$
 [8]

- (c) State three properties of convolution. [2]
- 5. (a) Find Fourier Transform of sin c function. Plot its magnitude spectrum $x(t) = \sin c(t)$. [8]
 - (b) State Dirichlet conditions for existence of Fourier Series. [3]
 - (c) Find Fourier series of the following functions: [5]

$$x(t) = \sin \omega_0 t.$$

Or

6. (a) Find Fourier Transform of the following function using properties:

$$y(t) = \frac{d}{dt} \left\{ t e^{-3t} . u(t) * e^{-2t} . u(t) \right\}.$$
 [8]

[4062]-151

[4]

State properties of ROC of LT.

(c)

9.	(a)	Find autocorrelation, PSD and power of the signal
		$x(t) = 7 + 6 \sin (200 \pi t + 30^{\circ}).$ [10]
	(<i>b</i>)	Show that autocorrelation and ESD form Fourier pair of each
		other. [6]
		Or
10.	(a)	Show that autocorrelation and ESD form Fourier pair of each
		other, for the following function
		$x(t) = e^{-5t} \cdot u(t).$ [10]
	(<i>b</i>)	Define, prove and write the properties of the following:
		Cross-correlation of energy signal. [6]
11.	(a)	A box contains 5 yellow, 7 pink and 4 green balls. A ball
11.	(<i>a</i>)	
		is drawn at random. Find the probability that it is: (i) Pink
		(ii) Not green
		(iii) Green σ Yellow. [8]
	<i>(b)</i>	Explain two-distribution function. [6]
	(c)	Define the terms: [4]
		(i) Mean value
		(ii) Moment
		(iii) Standard deviation
		(iv) Mean square.
[4062]-151		6

- 12. (a) Two dice are thrown at random several times. The random variable assigns the sum of the numbers appearing on dice to each outcome (event). Find the CDF for random variable. [8]
 - (b) State the properties of PDF. [4]
 - (c) Find the mean, second moment and standard deviation of 'X' when

$$\mathbf{F}_{x}(\mathbf{X}) = \mathbf{A}e^{-\mathbf{A}x} \ u(x). \tag{6}$$

