Total No. of Questions-12]
[Total No. of Printed Pages-7

## [4062]-151

## S.E. (E\&TC/Elex.) (First Semester) EXAMINATION, 2011 SIGNALS AND SYSTEMS <br> (2008 PATTERN)

Time : Three Hours
Maximum Marks : 100
N.B. :- (i) Answer three questions from Section I and three questions from Section II.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Your answers will be valued as a whole.
(v) Assume suitable data, if necessary.

## SECTION I

1. (a) Sketch the following signal

$$
x(t)=\left\{\begin{array}{cc}
5-t & 4 \leq t \leq 5 \\
1 & -4 \leq t \leq 4 \\
t+5 & -5 \leq t \leq-4 \\
0 & \text { otherwise }
\end{array}\right.
$$

Also determine total energy of signal $x(t)$.
(b) Check whether the following systems are :
(i) Static/Dynamic
(ii) Causal/Non-causal
(iii) Stable/Unstable
(iv) Time invarient/Time varient
(I) $\quad y(t)=x(t+10)+x^{2}(t)$
(II) $y[n]=\frac{1}{3}\{x[n]+x[n-1]+x[n-2]\}$.

Or
2. (a) Sketch the following signals :
(i) $x(t)=-u(t+3)+2 u(t+1)-2 u(t-1)+u(t-3)$
(ii) $\quad x(t)=\sum_{k=-\infty}^{\infty} \delta(t-3 k)$
(iii) $\quad x[n]=\left(\frac{1}{3}\right)^{n} \cdot u[n]$
(b) Determine whether the signals are periodic or non-periodic :
(i) $\quad x[n]=\cos ^{2}\left(\frac{\pi}{8} n\right)$
(ii) $\quad x[t]=\cos \left(\frac{\pi}{3} t\right)+\sin \left(\frac{\pi}{4} t\right)$

Determine energy or power of signal

$$
\begin{align*}
& x(t)=6 \cdot e^{-j 5 t} \\
& x[n]=\left(\frac{1}{2}\right)^{n} \cdot u[n] . \tag{8}
\end{align*}
$$

3. (a) Evaluate the convolution integral for input $x(t)$ and impulse response $h(t)$ shown in Fig. 1 and Fig. 2.


Fig. 1


Fig. 2
(b) For each of the following impulse responses determine whether corresponding system is memoryless, causal and stable, justify answer.
[6]

$$
\begin{aligned}
h(t)= & e^{-2 t} \cdot u(t) . \\
& O r
\end{aligned}
$$

4. (a) Evaluate the convolution integral for input $x(t)$ and impulse response $h(t)$

$$
\begin{align*}
& x(t)=\operatorname{rect}(t) \\
& h(t)=\operatorname{rect}(t) . \tag{8}
\end{align*}
$$

(b) Find the step response of the first order recurssive system with impulse response $h[n]=\left(\frac{1}{3}\right)^{n} \cdot u[n]$.
(c) State three properties of convolution.
5. (a) Find Fourier Transform of $\sin c$ function. Plot its magnitude spectrum $\quad x(t)=\sin \quad c(t)$.
(b) State Dirichlet conditions for existence of Fourier Series. [3]
(c) Find Fourier series of the following functions :

$$
x(t)=\sin \omega_{0} t .
$$

Or
6. (a) Find Fourier Transform of the following function using properties :

$$
\begin{equation*}
y(t)=\frac{d}{d t}\left\{t e^{-3 t} \cdot u(t) * e^{-2 t} \cdot u(t)\right\} . \tag{8}
\end{equation*}
$$

(b) State and prove the following properties of CTFT :
(i) Time scaling
(ii) Convolution.

## SECTION II

7. (a) Determine Laplace Transform and sketch its ROC :
[8]
(i) $x(t)=e^{-2 t} \cdot u(t)+e^{-3 t} \cdot u(t)$
(ii) $\quad x(t)=\sin 3 t \cdot u(t)$
(b) State and prove properties of Laplace Transform :
(i) Differentiation in time domain
(ii) Frequency shifting.
Or
8. (a) Find the Laplace transform of

$$
\begin{aligned}
x(t) & =(t-2)^{3} & & \text { for } t>2 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

(b) Find $f(\infty)$, final value of the function whose Laplace Transform is given as

$$
\begin{equation*}
\mathrm{F}(s)=\frac{5}{s}-\frac{1}{s-4} . \tag{4}
\end{equation*}
$$

(c) State properties of ROC of LT.
9. (a) Find autocorrelation, PSD and power of the signal

$$
\begin{equation*}
x(t)=7+6 \sin \left(200 \pi t+30^{\circ}\right) \tag{10}
\end{equation*}
$$

(b) Show that autocorrelation and ESD form Fourier pair of each other.

## Or

10. (a) Show that autocorrelation and ESD form Fourier pair of each other, for the following function

$$
\begin{equation*}
x(t)=e^{-5 t} \cdot u(t) \tag{10}
\end{equation*}
$$

(b) Define, prove and write the properties of the following : Cross-correlation of energy signal.
11. (a) A box contains 5 yellow, 7 pink and 4 green balls. A ball is drawn at random. Find the probability that it is :
(i) Pink
(ii) Not green
(iii) Green $\alpha$ Yellow.
(b) Explain two-distribution function.
(c) Define the terms :
(i) Mean value
(ii) Moment
(iii) Standard deviation
(iv) Mean square.

## Or

12. (a) Two dice are thrown at random several times. The random variable assigns the sum of the numbers appearing on dice to each outcome (event). Find the CDF for random variable. [8]
(b) State the properties of PDF.
(c) Find the mean, second moment and standard deviation of ' X ' when

$$
\begin{equation*}
\mathrm{F}_{x}(\mathrm{X})=\mathrm{A} e^{-\mathrm{A} x} u(x) . \tag{6}
\end{equation*}
$$

