Total No. of Questions-12]
[Total No. of Printed Pages-8
[3862]-161
S.E. (E \& TC/Elex)(First Semester) EXAMINATION, 2010 SIGNALS AND SYSTEMS
(2008 COURSE)
Time : Three Hours
Maximum Marks : 100
N.B. :- (i) Answer any three questions from each Section.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right indicate full marks.
(v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
(vi) Assume suitable data, if necessary.

SECTION I

1. (a) Determine whether the signal is an energy or power signal. Find the value of the same. (Refer Fig. 1) :

3

$$
3 e^{-t / 2}
$$

0

$$
t
$$

Fig. 1
P.T.O.
(b) Determine whether the signal is periodic or aperiodic. If periodic, find its period :
(i) $\quad x(t)=2 \cos \frac{2 \pi t}{3}+3 \cos \frac{2 \pi t}{7}$
(ii) $x[n]=\cos 2 n$.
(c) Find the odd and even parts of the signal (Refer Fig. 2) :

Fig. 2

Or
2. (a) Sketch the following waveforms :
(i)
(ii)
(b) Determine if the following systems is memoryless, causal, linear, time invariant and stable :

$$
y(t)=\sin [x(t+2)] .
$$

(c) Determine if the given system is static, causal, stable if impulse reponse $h(t)$ is given by $h(t)=e^{-2 t}$. $u(t)$.
3. (a) State the properties of convolution integral.
(b) Find the step response of the system whose impulse response is :
(i)
(ii) $u[n]$.
(c) Compute the convolution of and
[7]
Or
4. Find the response $y(t)$ of the LTI system shown by the block diagram (Refer Fig. 3) :

Delay
2 sec.

Fig. 3
where

$$
\begin{aligned}
h(t) & =e^{-2 t} & & \text { for } t>0 \\
& =0 & & \text { elsewhere } .
\end{aligned}
$$

5. (a) Obtain the exponential Fourier series of the rectangular pulse shown below (Refer Fig. 4) :

A
$\begin{array}{llll}0 & \frac{\tau}{2} & \mathrm{~T}_{0} & t\end{array}$

Fig. 4
(b) Draw the magnitude and phase spectrum of the signal in Q. $5(a)$ above.
6. (a) Obtain the Fourier transform of the signal shown below, using linearity property (Refer Fig. 5).

$$
x(t)
$$

1

-2	0	2	t
	-1		

Fig. 5
(b) Obtain the Fourier transform of a unit step function and plot its magnitude and phase spectrum.

SECTION II

7. (a) A 0.5 F capacitor is in the network which is initially charged to 10 V and switch is closed at $t=0$. Find $i(t)$ for $t>0$ using Laplace transform (Refer Fig. 6) :
$\mathrm{X}(s)=\frac{2 s+3}{s^{2}+5 s-7}$

Fig. 6
(b) Find the Laplace transform of $x(t)=e^{-3 t} . u(t)$ and plot its R.O.C.
(c) Find the initial and final value of $x(t)$ given :

Also state the Initial and Final value theorem.

Or
8. (a) Obtain Laplace transform of the waveform shown in Fig. 7 :

Fig. 7
(b) Using properties of Laplace transform, find if :

$$
\mathrm{X}(s)=\frac{4 s}{s^{2}+2 s+1}
$$

(i) $x(5 t)$
(ii) $x(t) * u(t)$.
(c) Find the time domain representation of the signal given :

$$
\begin{equation*}
\mathrm{X}(s)=\frac{s^{2}+4 s+3}{(s+2)\left(s^{2}+2 s+1\right)} . \tag{5}
\end{equation*}
$$

9. A time domain signal $x(t)=e^{-4 t} u(t)$.

Find :
(i) Autocorrelation function
(ii) Spectrum X(f)
(iii) Energy spectral density
(iv) Energy
(v) Plot of autocorrelation
(vi) Plot of ESD.

Or

10. (a) Obtain the cross correlation of the following sequences : $x_{1}[n]=\{2,3,4\}, x_{2}[n]=\{1,2,3\}$.
(b) List the properties of energy spectral density and power spectral density.
11. (a) A box contains 3 white, 4 red and 5 black balls. A ball is drawn at random. Find the probability that it is :
(i) Red
(ii) Not black
(iii) Black or White.
(b) Explain Poisson's and Gaussian distribution function.
(c) Find the expectation of random variable X which is defined by :
$\mathrm{X}=-2$ with probability $1 / 4$
$=3$ with probability $1 / 2$
$=1$ with probability $1 / 4$
Find $E\left[X^{2}\right]$.

Or
12. (a) Each letter of the word ATTRACT is written on a separate card. The cards are then thoroughly shuffled and four of them are drawn in succession. What is the probability of getting result as TACT ?
(b) With an example explain the concept of continuous R.V. and Discrete R.V. What is the P.D.F. and C.D.F. ? Plot PDF of uniform distributed R.V. over an interval (0 to 2π).
(c) A continuous R.V. X has the following density function : [4] $0<\mathrm{X}<2$

$$
=0 \quad \text { elsewhere }
$$

Find :
(i) The normalising factor k
(ii) The probabilities that $0.2<\mathrm{X}<0.5$.

