Total No. of Questions—12]

S.E. (E & TC/Elex)(First Semester) EXAMINATION, 2010 SIGNALS AND SYSTEMS (2008 COURSE)

Time : Three Hours

Maximum Marks : 100

N.B. :- (i) Answer any three questions from each Section.

- (*ii*) Answers to the two Sections should be written in separate answer-books.
- (iii) Neat diagrams must be drawn wherever necessary.
- (*iv*) Figures to the right indicate full marks.
- (v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- (vi) Assume suitable data, if necessary.

SECTION I

(a) Determine whether the signal is an energy or power signal.
 Find the value of the same. (Refer Fig. 1) : [6]

x(t)

3

 $3e^{-t/2}$

t

-1 0

Fig. 1

P.T.O.

(b) Determine whether the signal is periodic or aperiodic. If periodic, find its period :

(i)
$$x(t) = 2\cos\frac{2\pi t}{3} + 3\cos\frac{2\pi t}{7}$$
 [4]

(*ii*)
$$x[n] = \cos 2 n.$$
 [2]

[6]

(c) Find the odd and even parts of the signal (Refer Fig. 2) :

$$r(t)$$

 $r(t)$
 $r(t)$

Or

- 2. (a) Sketch the following waveforms : [5] (i) (ii) . [5]
 - (b) Determine if the following systems is memoryless, causal, linear, time invariant and stable : [7] $y(t) = \sin [x (t + 2)].$
 - (c) Determine if the given system is static, causal, stable if impulse reponse h(t) is given by $h(t) = e^{-2t}$. u(-t). [6]

[3862]-161

3.	(<i>a</i>)	State the properties of convolution integral.	[3]
	(<i>b</i>)	Find the step response of the system whose impulse respo	nse
		is :	[6]
		(i)	
		(ii) $u[n]$.	
	(<i>c</i>)	Compute the convolution of	and
			[7]

Or4. Find the response y(t) of the LTI system shown by the block diagram (Refer Fig. 3) : [16] u(t) w(t) w(t) x(t) LTI y(t)System

where

 $h(t) = e^{-2t}$ for t > 0= 0 elsewhere. 5. (a) Obtain the exponential Fourier series of the rectangular pulse shown below (Refer Fig. 4) : [8] x(t)

(b)Draw the magnitude and phase spectrum of the signal in
Q. 5(a) above.[8]

Or

6. (a) Obtain the Fourier transform of the signal shown below, using linearity property (Refer Fig. 5). [10]

[3862]-161

4

(b) Obtain the Fourier transform of a unit step function and plot its magnitude and phase spectrum. [6]

SECTION II

7. (a) A 0.5 F capacitor is in the network which is initially charged to 10 V and switch is closed at t = 0. Find i(t) for t > 0 using Laplace transform (Refer Fig. 6) : [8]

Fig. 6

- (b) Find the Laplace transform of $x(t) = e^{-3t}$. u(-t) and plot its R.O.C. [5]
- (c) Find the initial and final value of x(t) given : [5]

Also state the Initial and Final value theorem.

8. (a) Obtain Laplace transform of the waveform shown in Fig. 7 : [8]

9. A time domain signal $x(t) = e^{-4t} u(t)$. [16] Find :

6

(*i*) Autocorrelation function

[3862]-161

- (*ii*) Spectrum X(f)
- (*iii*) Energy spectral density
- (*iv*) Energy
- (v) Plot of autocorrelation
- (vi) Plot of ESD.

Or

- 10. (a) Obtain the cross correlation of the following sequences : [8] $x_1[n] = \{2, 3, 4\}, x_2[n] = \{1, 2, 3\}.$
 - (b) List the properties of energy spectral density and power spectral density.[8]
- (a) A box contains 3 white, 4 red and 5 black balls. A ball is drawn at random. Find the probability that it is : [6]
 (i) Red
 - (ii) Not black
 - (*iii*) Black or White.
 - (b) Explain Poisson's and Gaussian distribution function. [6]
 - (c) Find the expectation of random variable X which is defined by : [4]
 - X = -2 with probability 1/4
 = 3 with probability 1/2
 = 1 with probability 1/4
 Find E[X²].

- 12. (a) Each letter of the word ATTRACT is written on a separate card. The cards are then thoroughly shuffled and four of them are drawn in succession. What is the probability of getting result as TACT ?
 - (b) With an example explain the concept of continuous R.V. and Discrete R.V. What is the P.D.F. and C.D.F. ? Plot PDF of uniform distributed R.V. over an interval (0 to 2π). [8]
 - (c) A continuous R.V. X has the following density function : [4]

= 0 elsewhere

Find :

- (i) The normalising factor k
- (*ii*) The probabilities that 0.2 < X < 0.5.