Total No. of Questions-12]

S.E. (Comp./IT/Electrical/Instru.)

(Second Sem.) EXAMINATION, 2011
ENGINEERING MATHEMATICS-III

(2008 PATTERN)

Time : Three Hours
Maximum Marks : 100
N.B. :- (i) In Section I, attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6.
(ii) In Section II, attempt Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12.
(iii) Answers to the two Sections should be written in separate answer-books.
(iv) Figures to the right indicate full marks.
(v) Use of electronic pocket calculator is allowed (NonProgrammable).
(vi) Assume suitable data, if necessary.

SECTION I

1. (a) Solve any three of the following :
(i) $\left(\mathrm{D}^{2}+3 \mathrm{D}+2\right) y=e^{e^{x}}+\cos e^{x}$
(ii) $\left(\mathrm{D}^{2}-4 \mathrm{D}+3\right) y=x^{3} e^{2 x}$
(iii) $\left(\mathrm{D}^{2}+4\right) y=\tan 2 x$ (by using method of variation of parameters)
(iv) $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}-y=2 \log (x+1)+x-1$.
(b) Solve :

$$
\begin{equation*}
\frac{d x}{d t}+5 x-2 y=t, \frac{d y}{d t}+2 x+y=0 . \tag{5}
\end{equation*}
$$

Or
2. (a) Solve any three of the following :
(i) $\left(\mathrm{D}^{2}-\mathrm{D}-2\right) y=2 \log x+\frac{1}{x}+\frac{1}{x^{2}}$
(ii) $\left(\mathrm{D}^{2}-2 \mathrm{D}\right) y=e^{x} \sin x$
(by using method of variation of parameters)
(iii) $\left(\mathrm{D}^{2}-3 \mathrm{D}+2\right) y=x e^{3 x}+\sin 2 x$
(iv) $\frac{d x}{y}=\frac{d y}{-x}=\frac{d z}{2 x-3 y}$.
(b) An electric circuit consists of a capacitor of $10^{-3} \mathrm{~F}$ is in series with an emf of 20 V and inductor of 0.4 H . If charge Q and current I are zero at time $t=0$, find charge Q at time t.
3. (a) $\mathbb{f} v=3 x^{2} y-y^{3}$, find the analytic function $f(z)=u+i v$ in terms of z.
(b) Find bilinear transformation which maps the points $1, i,-1$ of z-plane into the points $i, 0,-i$ of w-plane respectively. [5]
(c) Evaluate :

$$
\begin{equation*}
\mathrm{I}=\prod_{\mathrm{C}} \frac{4 z^{2}+z}{(z-1)^{2}} d z \tag{6}
\end{equation*}
$$

where 'C' is contour $|z-1|=2$.
Or
4. (a) Show that analytic function with constant modulus is constant.
[6]
(b) Show that the map $w=\frac{2 z+3}{z-4}$ transforms the circle $x^{2}+$ $y^{2}-4 x=0$ into the straight line $4 u+3=0$.
(c) Evaluate :

$$
\int_{0}^{2 \pi} \frac{d \theta}{5+3 \cos \theta}
$$

using Cauchy's theorem.
5. (a) Find Fourier transform of

$$
f(x)=\left\{\begin{array}{lc}
1 & -2 \leq x<0 \\
-1 & 0<x \leq 2
\end{array}\right.
$$

Hence show that :

$$
\begin{equation*}
\int_{0}^{\infty} \frac{(\cos 2 x-1) \sin 2 x}{x} d x=\frac{-\pi}{2} . \tag{6}
\end{equation*}
$$

(b) Find Fourier cosine transform of the function

$$
\begin{equation*}
f(x)=2 e^{-5 x}+5 e^{-2 x} \tag{5}
\end{equation*}
$$

(c) Find z-transform of (any two):
(i) $f(k)=\sin (3 k+4) \ldots \ldots k \geq 0$
(ii)

$$
\text { (iii) } f(k)=(k+2) 2^{k} \ldots \ldots . k \geq 0
$$

Or

6. (a) Find inverse z-transform of (any two) :
(i) $\mathrm{F}(z)=\frac{1}{(z-2)(z-3)}$ (by Inversion integral method)
(ii) $\mathrm{F}(z)=\frac{z(z+1)}{z^{2}-2 z+1} \quad$ if $|z|>1$
(iii) $\mathrm{F}(z)=\frac{z^{2}}{\left(z-\frac{1}{4}\right)\left(z-\frac{1}{5}\right)}$ if $|z|<\frac{1}{5}$
(b) Solve the difference equation :

$$
f(k+1)-f(k)=1, f(0)=0
$$

(c) Solve the integral equation :

SECTION II

7. (a) Find the first four moments about mean for the following distribution. Also find β_{1} and β_{2} :

Marks	No. of Students
$0-10$	1
$10-20$	6
$\int_{0}^{\infty} f(x) \cos \lambda x d x=e^{-\lambda} \quad \lambda>030-40$	10
	$20-30$
$40-50$	15
$50-60$	11

(b) Two lines of regression are given by $5 y-8 x+17=0$ and $2 y-5 x+14=0$. If $\sigma_{y}{ }^{2}=16$, find :
(i) the mean value of x and y
(ii) $\sigma_{x}{ }^{2}$
(iii) the coefficient of correlation between x and y.
8. (a) A husband and wife appear in an interview for two vacancies in the same post. The probability of husband selection is $\frac{1}{7}$ and that of wife's selection is $\frac{1}{5}$. What is the probability (i) both of them will be selected, (ii) only one of them will be selected and (iii) none of them will be selected ?
(b) One percent of articles from a certain machine are defective. What is the probability of (i) no defective, (ii) one defective and (iii) two or more defective in a sample of 100.
(c) Mean and variance of binomial distribution are 6 and 2 respectively.

$$
\text { Find } \mathrm{P}(r>1) .
$$

9. (a) Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 i-j-2 k$. Find the greatest rate of increase of ϕ.
(b) A fluid motion is given by $\bar{v}=(y \sin z-\sin x)+(x \sin$ $z+2 y z) \hat{j}+\left(x y \cos z+y^{2}\right) \hat{k}$. Is the motion irrotational. If so, find the velocity potential.
(c) Find curl curl $\overline{\mathrm{F}}$ at the point (0, 1, 2), where

$$
\begin{equation*}
\overline{\mathrm{F}}=x^{2} y i+x y z j+z^{2} y k . \tag{5}
\end{equation*}
$$

10. (a) Attempt any two :
[6]
(i) Prove that :

$$
\nabla \times\left(\frac{\bar{\alpha} \times \bar{r})}{r^{n}}\right)=\frac{(2-n) \bar{a}}{r^{n}}+\frac{n(\bar{\alpha} \cdot \bar{r})}{r^{n+2}} \bar{r} .
$$

(ii) Prove that :

$$
\bar{b} \times \nabla(\bar{a} \cdot \nabla \log r)=\frac{\bar{b} \times \bar{a}}{r^{2}}-\frac{2(\bar{a} \cdot \bar{r})(\bar{b} \times \bar{r})}{r^{4}} .
$$

(iii) Find the value of $\nabla^{2}\left(r^{n} \log r\right)$.
(b) If

$$
\bar{r} \cdot \frac{d \bar{r}}{d t}=0,
$$

then show that \bar{r} has constant magnitude.
$\overline{\mathrm{F}}=\left(2 x+y^{2}\right) i+(3 y-(\bar{e}) \mathrm{ai}) \dot{d}$ the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and

$$
\begin{equation*}
z=x^{2}+y^{2}-3 \text { at the point }(2,-1,2) . \tag{5}
\end{equation*}
$$

11. (a) If
then evaluate $\int_{\mathrm{C}} \overline{\mathrm{F}} . d \bar{r}$ around the parabolic arc $y^{2}=x$ joining $(0,0)$ and $(1,1)$.
(b) Evaluate :

$$
\iint_{\mathrm{S}}\left(x^{3} i+y^{3} j+z^{3} k\right) d \overline{\mathrm{~S}}
$$

where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=16$. [6]
(c) Evaluate

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r}
$$

by Stokes' theorem, where $\overline{\mathrm{F}}=y^{2} \hat{i}+x^{2} \hat{j}-(x+z) \hat{k}$ and C is the boundary of the triangle with vertices $(0,0,0),(1,0,0)$ and ($1,1,0$).

Or
12. (a) Verify Green's Lemma in the plane for

$$
\int\left(3 x^{2}-8 y^{2}\right) d y+(4 y-6 x y) d y
$$

where C is the boundary defined by $x=0, y=0$ $x+y=1$.
(b) A vector field is given by $\overline{\mathrm{F}}=(\cos y) i+x(1-\sin y) j$. Evaluate the line integral over the circular path given by $x^{2}+y^{2}=a^{2}$, $z=0$.
(c) Evaluate :

$$
\iint_{\mathrm{S}} \nabla \times \overline{\mathrm{P}} \cdot d \overline{\mathrm{~S}}
$$

for $\overline{\mathrm{F}}=y \hat{i}+z \hat{j}+x \hat{k}$, where S is the surface of the paraboloid $z=1-x^{2}-y^{2}, z>0$.

