MASTER IN COMPUTER APPLICATIONS PAPER

```
1. The order of 2 in the field \mathbb{Z} 29 is
(A) 2
(B) 14
(C) 28
(D) 29
2. If ( ) ( )i( )j( )k1 2 3 u t = u t + u t + u t
is a unit vector and \neq 0,
dt
u d then the angle between ) (t u
and
dt
d u
\rightarrow
is
(A) 0
(B)
4
π
(C)
3
π
(D)
2
3. The missing terms in the table
x0123456
y(x) 0 3 0 3 0
using a 4th degree interpolating polynomial are
(A) (-45, -192)
(B) (-45, -576)
(C) (-90, -192)
(D) (-90, 576)
4. The differential equation
2ydx - (3y - 2x)dy = 0
(A) exact and homogeneous but not linear
(B) homogeneous and linear but not exact
(C) exact and linear but not homogeneous
(D) exact, homogeneous and linear
5. For f(x) = (1 + Sin x) Cos x, where 0 \le x < 2\pi, which of the following statements is true
(A) f(x) has a local maxima at
π
X =
(B) f(x) has a local minima at
П
(C) f(x) has a local maxima at
5
π
(D) f(x) has a local minima at
```

```
3
π
X =
6. Let W be the subspace spanned by (2i, 0, 1, 2i), (0, 2i - 2, i - 3, 0), (-i, 1, 0, i) and (1, 1, 1, 1) in
© 4 over ©. The dimension of W over © is
(A) 1
(B) 2
(C) 3
(D) 4
7. If
3()[(0)()(2)]
2
0 [
= + +
fx dx hafbfhcfh
for all polynomials f(x) of degree \leq 2, and h > 0, then (a,b,c) is
(A) (1, 2, 1)
(B)(1, 4, 1)
(C) (2, 2, 2)
(D)(2, 4, 1)
8. The value of the integral ∫∫
0
Χ
У
dydx
У
e is
(A) 0
(B) 1
(C) 2
(D) ∞
4
9. The function f(x, y) = x3 + 3xy2 - 4y3 - 15x has a local
(A) minima at (-5, 0)
(B) minima at (5, 5)
(C) maxima at (5, 0)
(D) maxima at (-5, 0)
10. The remainder obtained on dividing 21680 by 1763 is
(A) 1
(B) 3
(C) 13
(D) 31
11. The orthogonal trajectories of the curves y = 3x3 + x + c are
(A) 2 \tan -1 3x + 3 \ln y = k
(B) 3\tan^{-1} 3x + 2\ln y = k
(C) 3\tan -1 3x - 2\ln y = k
(D) 3 \ln x - 2 \tan -13y = k
12. The iterative formula to compute the reciprocal of a given positive real number α using
Newton-Raphson method is
(A) (2) n \cdot 1 \cdot n \cdot n \cdot x = x - \alpha \cdot x +
(B) (2) n \cdot 1 \cdot n \cdot n \cdot x = x + \alpha \cdot x +
(C) 2 (2)
n 1 n n x = x - \alpha x +
(D) 2 (2)
n 1 n n x = x + \alpha x +
13. If () 3 () 4 () 1 1 2 y'x = yx + yx and () 4 () 3 () 2 1 2 y'x = yx + yx, then () 1 yx is
(A) c ex c e7 x
12 +
(B) c ex c e 7 x
```

```
12 + -
(C) cexce7x
12 - +
(D) cexce7x
12-+-
14. Let G be a group of order 8 generated by a and b such that a4 = b2 = 1 and ba = a3b.
The order of the center of G is
(A) 1
(B) 2
(C) 4
(D) 8
15. The general solution of the differential equation
(x + y - 3)dx - (2x + 2y + 1)dy = 0
(A) \ln 3x + 3y - 2 + 3x + 6y = k
(B) \ln 3x + 3y - 2 - 3x - 6y = k
(C) 7 \ln 3x + 3y - 2 + 3x + 6y = k
(D) 7 \ln 3x + 3y - 2 - 3x + 6y = k
16. The surface area of the solid generated by revolving the line segment y = x + 2 for 0 \le x \le 1
about the line y = 2 is
(A) 2 \pi
(B) 2π
(C) 22 \pi
(D) 4π
17. Let g(x) be the Maclaurin's expansion of Sin2x. If Sin2x is approximated by g(x) so
that the error is at most 10 4
1250 \times - for
0 \le x \le 1, then the minimum number of non-zero
terms in g(x) is
(A) 2
(B) 3
(C) 4
(D) 5
18. Let f(x) = x^2 + 1, g(x) = x^3 + x^2 + 1 and h(x) = x^4 + x^2 + 1. Then
(A) f(x) and g(x) are reducible over \mathbb{Z} 2
(B) g(x) and h(x) are reducible over \mathbb{Z} 2
(C) f(x) and h(x) are reducible over \mathbb{Z} 2
(D) f(x), g(x) and h(x) are reducible over \mathbb{Z} 2
19. The general solution of the differential equation
y''(x) - 4y'(x) + 8y(x) = 10 \ exCosx
(A) (22)(2)12
e2x k Cos x + k Sin x + ex Cos x + Sin x
(B) (22)(2)12
e2x \ k \ Cos \ x + k \ Sin \ x + ex \ Cos x - Sin x
(C) (22)(2)12
e-2x \ k \ Cos \ x + k \ Sin \ x - ex \ Cos x - Sin x
(D) (22)(2)12
e-2x \ k \ Cos \ x + k \ Sin \ x + ex \ Cos x + Sin x
20. Let
IJ
| | |
17
11 12
4 12
```

```
9 10
6 11
78
93
56
8 5
3 4
2 10
12
\boldsymbol{\sigma} . The cardinality of the orbit of 2
under \sigma is
(A) 3
(B) 6
(C) 9
(D) 12
21. The value of the integral ] +
0
2
10
dx
x using Simpson's
1 rule with h = 0.5 is
(A)
902
41
(B)
902
43
(C)
902
45
(D)
902
22. Let f(x, y) = \ln x + y and g(x, y) = x + y. Then the value of \Box 2 ( fg) at (1,0) is
(A)
2
- 1
(B) 0
(C)
2
(D) 1
23. The general solution of the differential equation
(6) 20 x^2 - e^{-y^2} dx + xye^{-y^2} dy =
(A) x (2x e y) c 2 -- 2 =
(B) x (2x e y) c 2 + - 2 =
(C) x(2x e y) c 2 + -2 =
(D) x(2x e y) c 2 - - 2 =
24. If
0, otherwise
(,)22,(,)(0,0)
```

```
3
хy
хy
Χ
f x y
then at (0,0)
(A)
X
f
д
д
and
y
f
д
д
exist and are equal
Χ
f
д
д
and
y
f
д
д
exist but not equal
(C)
X
f
д
д
exists but
y
f
д
д
does not
(D)
y
f
д
д
exists but
Χ
f
д
д
25. Two teams A and B play a series of four matches. If the probability that team A wins
a match is
2, then the probability that team A wins three matches, loses one and the third
win occurs in the fourth match is
(A)
27
8
(B)
27
16
(C)
```

```
8
(D)
81
32
26. The function
|
|
|
= \neq
0,0
1,0
()
Χ
Χ
Χ
f x x Sin
is differentiable at x = 0 for all a in the interval
(A) (-\infty, 1]
(B) (-1, ∞)
(C) (1, ∞)
(D) [1, ∞)
27. A fair coin is tossed twice. Let A be the event that at least one tail appears and B be the
event that both head and tail appear. Then P(A/B), the probability of A given B, is
(A)
4
1
(B)
2
(C)
3
2
28. The value of f(5) using Lagrange's interpolation formula, given
x0146
F(x) 1 –1 1 –1
is
(A)
2
- 3
(B) -1
(C) 1
(D)
2
29. Let F be a field. Given below are six statements about F.
1. F is a skew field
2. F is a group with respect to multiplication
3. F is an integral domain
4. F has zero divisors
5. F has no zero divisors
6. Only ideals of F are {0} and itself
In which of the following options all the statements are correct?
(A) 1, 2, 3
(B) 1, 3, 5
(C) 2, 4, 6
(D) 4, 5, 6
30. The work done by the force = 3i - 2j + 4k
```

81

```
p acting on a particle, if the particle is
displaced from A(8, -2, -3) to B(-2, 0, 6) along the line segment AB, is
(A) 0
(B) 2
(C) 3.5
(D) 4.2
31. If 8x - y = 15 is a tangent at (2, 1) to the curve y = x3 + ax2 + b, then (a, b) is
(A)(1,3)
(B)(-1,3)
(C)(1, -3)
(D)(-1, -3)
32. The entire area bounded by the curve r2 = a \cos 2\theta is
(A) a
(B) 2a
(C) π a
(D) 2π a
33. The inverse of the matrix
  | | | | | |
 10001
10010
10100
1\,1\,0\,0\,0
10000
is
  1111
 10001
10010
10100
11000
10000
  10010
10100
11000
1\,1\,0\,0\,0
10000
```

```
10001
10010
10100
11000
10000
10
  1111
10001
10010
10100
11000
10000
34. Suppose that 20 misprints are distributed randomly in a book of 900 pages. Assuming
Poisson distribution, the probability that a chapter of 30 pages contains 2 misprints is
(A) 2 / 3
9
2 e–
(B) 3/2
2 e–
(C) 2/3
9 e–
(D) 3/2
8
35. The double integral ∫∫
1
2
(,)
f x y dydx under the transformation x = u (1 - v), y = uv
is transformed into
(A) ] ]
2/3
1/2
```

```
2/(1)
1/(1)
(,)
f u uv uv dudv
(B) ∫ ∫
2/3
1/2
2/(1)
1/(1)
(,)
V
f u uv uv u dudv
(C) ∫ ∫
2/3
1/2
2/(1)
1/(1)
(,)
f u uv uv v dudv
(D) ∫ ∫
1
2/3
2/(1)
1/(1)
(,)
f u uv uv u dudv
36. If \omega is a non-real cube root of unity, then the eigenvalues of the matrix
 24
2
1
1
111
ωω
ωω
```

```
0 1 0
100
2 4
2
1 1/ 1/
1 1/ 1/
111
ωω
ωω
are
(A) 1, -1, 0
(B), 0
3
, 1
3
1 –
(C) 1, \omega, \omega 2
(D) 3, -3, 0
37. The area bounded by the curve y = (x + 1)2, its tangent at (1, 4) and the x-axis is
(A)
3
1
(B)
3
2
(C) 1
(D)
3
38. Let V and W be vector spaces over a field F with dim FV = m and dim FW = n, where
m and n both are finite. Then dim F Hom(V, W) is
(A) m + n
(B) m-n
(C) mn
(D)
n
39. Which of the following is a unit normal vector to the surface z = xy at P (2, -1, -1)?
(A)
6
i-2j+k
(B) i - 2j + k
(C) - i + 2j + k
(D)
-i + 2j + k
40. The nullity of the matrix
  | \cdot | \cdot |
```

000

```
iii
i
i
iii
1212
2433
0222
101
is
(A) 1
(B) 2
(C) 3
(D) 4
41. Arc length of the curve y = x3/2, z = 0 from (0, 0, 0) to (4, 8, 0) is
(A) (10 1)
27
83/2 +
(B) (10 2)
27
8 3/2 -
(C)(101)
27
8 3/2 -
(D) (10 2)
27
83/2 +
42. The integral ∫
+ 1
2 (1)
x ex
dx
(A) converges and has value < 1
(B) converges and has value equal to 1
(C) converges and has value >1
(D) diverges
43. Let (n, p) and \lambda be the parameters of binomial and Poisson distributions respectively.
Consider the statements
P. The mean of the binomial distribution is np
Q. The standard deviation of the binomial distribution is np(1-p)
R. The mean of the Poisson distribution is \lambda
S. The variance of the Poisson distribution is \lambda
Which of the following group of statements is correct?
(A) P, R, S
(B) P, Q, S
(C) P, Q, R
(D) P, Q, R, S
44. The order of the quotient group \mathbb{Z}8 \times \mathbb{Z}9 \times \mathbb{Z}18 / \langle (2, 2, 2) \rangle is
(A) 18
(B) 36
(C) 72
(D) 144
45. Which of the following sets is NOT a convex set?
(A) \{(x, y) \mid 4x^2 + y^2 \le 9, x - y \le 1\}
(B) \{(x, y) \mid 4x^2 + y^2 \le 9, x - y \ge 1\}
(C) \{(x, y) \mid 4x^2 + y^2 \ge 9, x - y \ge 5\}
(D) \{(x, y) \mid 4x^2 + y^2 \ge 9, x - y \le 5\}
```

_ _ _ _

```
46. The volume of the smaller part of the sphere x^2 + y^2 + z^2 = 1 when cut off by the plane
2
z = 1 is (A)
5π
(B)
12
5π
(C)
8
5π
(D)
3
5π
47. Let
\|\cdot\|
233
123
112
iί
iί
iί
M . If
3 3 3
222
111
xyz
xyz
xyz
B, where
 1
2
1
x
Χ
Χ
```

```
;
2
1
У
У
У
and
3
1
z
z
are linearly independent eigenvectors of M, then the main diagonal of the matrix
B-1MB has
(A) exactly one real entry
(B) exactly two real entries
(C) exactly three real entries
(D) no real entry
48. The linear programming problem
, 0
2
230
2312
23
≥
≤
_ ≤
+ ≤
= +
хy
ху
хy
subject to
Maximize z x y
(A) no feasible solution
(B) unique optimal solution
(C) alternative optimal solutions
(D) unbounded solution
14
49. For the set W = \{ (x, 1, z) \square \mathbb{R} 3 \}, consider the statements
P. W is not closed under vector addition
Q. W is closed under scalar multiplication
R. Whas an additive identity
S. W is not a subspace of \mathbb{R} 3
Which of the following group of statements is true?
(A) P, R
(B) Q, R
(C) P, S
(D) Q, S
```

```
50. The number of values of \lambda for which the system of equations
X V Z
xyz
2 (4)
(1)(2)5
(3)10
λλ
λλ
λλ
+ + =
- + - =
has infinitely many solutions, is
(A) 1
(B) 2
(C) 3
(D) infinite
51. Let A and B be events with
P(A) = 2,
P(B) = 1 and
P(A \cap B) = 1. Match lists
I and II and select the correct answer.
List I List II
1. P(A∩ Bc ) P.
2. P(A□ Bc ) Q.
3
3. P(Ac \cap Bc) R.
5
4. P(Ac □ Bc ) S.
(A) (1, P), (2, Q), (3, R), (4, S)
(B) (1, R), (2, Q), (3, S), (4, P)
(C) (1, Q), (2, R), (3, S), (4, P)
(D) (1, Q), (2, R), (3, P), (4, S)
52. Consider the statements
(P) If a linear programming problem has only one optimal solution, then this solution is an
extreme point of the feasible region.
(Q) A linear programming problem either is infeasible or has at least one optimal solution.
(R) A linear programming problem can have exactly two optimal solutions.
(S) A feasible linear programming problem has an optimal solution or unbounded solution.
Which of the following group of statements is correct?
(A) P, Q
(B) P, R
(C) R, S
(D) P, S
53. For the linear programming problem
32
23
_ ≤ ≤
_ ≤ ≤
у
```

```
Χ
subject to
Minimize z x y
the minimum value of z is
(A) - 6
(B) - 5
(C) - 4
(D) 1
54. Let P be a set having n > 10 elements. The number of subsets of P having odd number of
elements is
(A) 2n-1-1
(B) 2n–1
(C) 2n-1+1
(D) 2n-1
55. Let P be the set of all planes in \mathbb{R} 3. The relation being normal in P is
(A) symmetric and transitive
(B) symmetric and reflexive
(C) symmetric but not transitive
(D) transitive but not reflexive
56. For sets P, Q, R which of the following is NOT correct?
(A) (P \square Q) \cap R = (P \cap R) \square (Q \cap R)
(B) (P \setminus Q) \setminus R = (P \setminus R) \setminus (Q \setminus R)
(C) If P \square Q = P \square R, then Q = R
(D) P \times (Q \cap R) = (P \times Q) \cap (P \times R)
16
57. If a \square b = a + b - ab for all a, b \square \mathbb{R}, then which of the following statements is correct?
(A) (\mathbb{R}, \square ) is a group
(B) (\mathbb{R}\setminus\{0\}, \square) is a group
(C) (\mathbb{R}\setminus\{1\}, \square) is a group
(D) (\mathbb{R}\setminus\{-1\}, \square ) is a group
58.
\rightarrow \rightarrow \rightarrow
(U \times V) \times W is equal to
(A)
(U. W) V + (U. V) W
(B)
(U. W) V - (V. W) U
(C)
(V. W) U - (U. W) V
(D)
(U.W)V+(V.W)U
59. The addition of the BCD numbers given below
01100111 and 01010011
is
(A) 000100100000
(B) 000110100000
(C) 000101100000
(D) 000101010000
60. The output of the following program
main()
{ int a[] = { 2,3,4,6,5};
int p = a;
for (int i = 0; i < 5; i++)
printf("%d,",++*p);
}
is
(A) 3, 4, 5, 6, 7
```

```
(B) 3, 4, 5, 7, 6
(C) 3, 4, 6, 5, 0
(D) 3, 4, 5, 6, 6
61. The multiplication of numbers (47)8 and (52)8 is
(A) (3144)8
(B) (3146)8
(C) (4147)8
(D) (4146)8
17
62. The output of the following program
main()
\{ int a = 10; b = 4; 
if(a&1 || b&1)
printf("Hello");
else printf("Welcome");
is
(A) Hello
(B) WelcomeHello
(C) HelloWelcome
(D) Welcome
63. The sequence 10000, 121, 100, 31, 24, ____, 20 represent a number x with respect
to different bases. The missing number in this sequence is
(A) 22
(B) 21
(C) 16
(D) 10
64. The program
main()
\{ int a = 256, *p=&a; \}
printf("%d",*p>>5);
prints
(A) 2
(B) 4
(C) 6
(D) 8
65. If (41)6 = (121)b then b is
(A) 1
(B) 2
(C) 3
(D) 4
6 6 . The output of the following program
main()
int a[] = "computation";
char *p = a, b=';
for (int i = 1; i < 12; i++)
if(i%4) continue;
else a[i]=b;
puts(p);
is
(A) comp
(B) comp tat on
(C) com utat on
(D) comp tati n
18
67. If
= aa - otherwise
```

```
a n even
a n
n
n
(),
1
/22
then to compute a27, the minimum number of multiplications and squaring required
respectively are
(A) 3 and 4
(B) 4 and 3
(C) 27 and 14
(D) 26 and 13
68. The output of the following logic circuit diagram for x = 0, y = 1, z = 1, u = 0,
v = 1, w = 0
хο
У
Ζ
u
w o
٧
is
(A) 0
(B) 00
(C) 1
(D) 10
69. The following function computes
int f(int p)
static int x = 10;
if(x = = 1) return 1;
if(x > 0)
{ x--;
return p*f(p);
(A) p9
(B) p10
(C) 10 p-1
(D) 10 p
19
70. Which of the following combinations is invalid in SR flip-flops?
(A) S = 0, R = 0
(B) S = 0, R = 1
(C) S = 1, R = 0
(D) S = 1, R = 1
71. What does the following function return?
int f()
int a, b, c;
if(a > b)
if(a > c)
if(c > b) return c;
else return b;
else return a;
else if(c > a)
if(c > b) return b;
else return c:
else return a;
(A) minimum(a, b, c)
```

```
(B) maximum(a, b, c)
(C) middle(a, b, c)
(D) gcd(a, b, c)
7 2. What does the following function print?
void f()
char p;
if((p = getchar()) != '\n') f();
putchar(p);
return;
(A) reverse of the given characters
(B) characters in the given order
(C) characters in the given order without the first character
(D) reverse of the given characters without the last character
73. The output of the following program
main()
int i = 4, j = 5;
while(i <= 6)
if(j >= 100) j = j - 2;
else j = i^*j; j++; i++;
printf("%d, %d", i++, j);
(A) 6, 105
(B) 6, 106
(C) 7, 105
(D) 7, 106
7 4. W hat is the output of the following program?
main()
int a, b, *p1, *p2, y;
a = 3; b = 4; p1 = &a; p2 = &b;
y = 4*-*p2/*p1+10;
a^* = b^* = a^* = y;
printf("%d,%d,%d",y,a,b);
(A) 5, 60, 900
(B) 5, 900, 60
(C) 60, 900, 5
(D) 900, 60, 5
75. From the following flip-flops
JK flip-flop
P. SR flip-flop
Q. D flip-flop
R. T flip-flop
The pair of flip-flops which uses only one input is
(A) (P, S)
(B) (Q, R)
(C) (R, S)
(D) (P, R)
21
76. Match list I and list II and select the correct group of matching
List I List II
P. optical memory 1. operating system
Q. ADA 2. USB port
R. Unix 3. programming language
S. memory stick 4. CD-ROM
```

```
(A) (P, 4), (Q, 3), (R, 1), (S, 2)
(B) (P, 3), (Q, 2), (R, 4), (S, 1)
(C) (P, 2), (Q, 1), (R, 3), (S, 4)
(D) (P, 1), (Q, 4), (R, 2), (S, 3)
77. ASCII stands for
(A) American Standard Code for International Interchange
(B) American Scientific Code for Information Interchange
(C) American Standard Code for Intelligence Interchange
(D) American Standard Code for Information Interchange
78. Match list I and list II and select the correct group of matching
List I List II
P. Wolfram 1, LISP
Q. Kennighnan & Ritchie 2. C++
R. John McCarthy 3. C
S. Stroustrup 4. MATHEMATICA
(A) (P, 1), (Q, 2), (R, 3), (S, 4)
(B) (P, 2), (Q, 3), (R, 4), (S, 1)
(C) (P, 3), (Q, 4), (R, 1), (S, 2)
(D) (P, 4), (Q, 3), (R, 1), (S, 2)
79. Consider the following pseudo code
1. for i □ 1 to 9
2. x = 1
3. for j □ i to 10
4. y = 2
The number of times the statement 2 and statement 4 executed respectively are
(A) (9, 9)
(B) (9, 54)
(C)(9,90)
(D) (10, 54)
22
80. Consider a tri-diagonal matrix A = (aii)n \times n. If the diagonal elements are stored in a
linear array B as B[1] = a11, B[2] = a12, B[3] = a13, B[4] = a22, ..., then the
relation in terms of m, k and l such that B[m] = akl is
(A) m = k + 1 - 2
(B) m = 2k - l + 2
(C) m = 2 k + 1 - 2
(D) m = k + 2I - 1
81. Match list I and list II and select the correct group of matching
List I List II
P. RAM 1. Hz
Q. CPU speed 2. MB
R. Monitor 3. Bytes/sec.
S. CD-ROM speed 4. inch
(A) (P, 2), (Q, 1), (R, 4), (S, 3)
(B) (P, 1), (Q, 2), (R, 3), (S, 4)
(C) (P, 3), (Q, 4), (R, 2), (S, 1)
(D) (P, 4), (Q, 3), (R, 1), (S, 2)
82. Which of the following is NOT a language processor?
(A) compiler
(B) loader
(C) interpreter
(D) assembler
83. Which of the following is NOT a internet protocol?
(A) LTP
(B) SMTP
(C) HTTP
(D) ATM
84. Which of the following statements in a Boolean algebra is NOT correct?
(A) A + A = A
(B) A . A = A
(C) A + 1 = A
```

(D) A + AB = A

```
85. Which of the following statements in a Boolean algebra is correct?
(A) AB = A + B
(B) AB = A \cdot B
(C) AB = A + B
(D) AB = A + B
86. The sequence that is in ascending order in size is
(A) bit, word, byte, nibble
(B) nibble, byte, bit, word
(C) nibble, bit, word, byte
(D) bit, nibble, byte, word
23
87. INDIA became Sovereign Democratic Republic country on
(A) 1950, January 26
(B) 1948, January 26
(C) 1947, August 15
(D) 1952, January 26
88. In the following table, numbers 1, 2, 3, 4 are to be arranged wherever missing in
such a way that each row as well as each column has all of these numbers exactly
once
4 2
24
1
The missing entries in the main diagonal are
(A) 1, 2, 3
(B) 2, 3, 4
(C) 1, 3, 4
(D) 1, 2, 4
89. If the word MANMOHANWASHERE corresponds to
ZOAABVNBJOFVRFR, then the word that corresponds to LRF is
(A) HEY
(B) MAN
(C) GOT
(D) YES
90. The next term in the sequence 1,
3,
6
11,
12
25,
60
137, ... is
(A)
10
7
(B)
120
299
(C)
60
151
(D)
20
91. The Headquarter of UNO is based in the city
(A) Geneva
(B) London
(C) Moscow
(D) New York
24
```

92. Given list I and list II as

List I List II P. Abhijnana Shakuntalam 1. Tulsidas Q. Godan 2. Valmiki R. Ramcharitmanas 3. Kalidas S . R a mayana 4. Jawaharlal Nehru T. Discovery of India 5. Prem Chand Which of the following group is correct? (A) (R-2, S-3, T-4) (B) (P-1, Q-5, S-2) (C) (P-3, S-2, T-4) (D) (Q-5, R-2, T-4) 93. In 2004 Olympic Games, Rajyavardhan Singh Rathore won (A) Gold Medal (B) Silver Medal (C) Bronze Medal (D) No Medal 94. A man has to travel from a point P to a point Q, 256 km apart. He travels half the distance on day one, half of the remaining distance on day two, half of the remaining distance on day three and so on. He reaches exactly at the point Q (A) in 8 days (B) in 16 days (C) in 24 days (D) never 95. A pipe can fill an empty tank in 6 hours, while another pipe can empty the full tank in 8 hours. If both the pipes are opened together when the tank is half full, then the tank will be full in (A) 6 hours (B) 12 hours (C) 18 hours (D) 20 hours 96. Total number of ways in which four boys and three girls can sit in a row so that boys and girls have alternate seats is (A) 72 (B) 144 (C) 288 (D) 720 97. Consider the following statements Ram eats if he is hungry If Ram eats, then he will sleep which of the following is true? (A) Ram is sleeping, he ate (B) Ram did not eat, he is not sleeping (C) Ram ate, he is not hungry (D) Ram is not sleeping, he did not eat 98. Let there be six distinct points in a plane. The maximum number of polygons having these points as their only vertices is (A) 24 (B) 42 (C) 64 (D) 84 99. In the context of Internet, WWW stands for (A) Wireless World Web (B) World Wise Web (C) Wide Wireless Web (D) World Wide Web 100. Match list I and list II and select the correct answer List I List II P. Azim Premii 1. Microsoft Q. Narayana Murthy 2. Wipro

R. Bill Gates 3. Satyam S. Ramalinga Raju 4. Infosys

- (A) (P, 1), (Q, 2), (R, 3), (S, 4) (B) (P, 2), (Q, 3), (R, 4), (S, 1) (C) (P, 3), (Q, 1), (R, 2), (S, 4) (D) (P, 2), (Q, 4), (R, 1), (S, 3)