Chemistry HL P1 TZ1 2010 May School Level 12th IB Diploma Programme **Board Exam** International Baccalaureate (IB Board) Solved shaalaa.com CHEMISTRY HIGHER LEVEL PAPER 1 Wednesday 12 May 2010 (afternoon) 1 hour #### INSTRUCTIONS TO CANDIDATES - · Do not open this examination paper until instructed to do so. - · Answer all the questions. - For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided. - The periodic table is provided for reference on page 2 of this examination paper. | | | Oroca I | O December | Toron Server | 0.20 | | | | | |--------------------|-----------------------|------------------------|-------------------|--------------------------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------------| | 0 | 2
He
4.00 | 10
Ne
20.18 | 18
Ar
39.95 | 36
Kr
83.80 | 54
Xe
131.30 | 86
Rn
(222) | | | | | 7 | | 9
F
19.00 | 17
CI
35.45 | 35
Br
79.90 | 53
1
126.90 | 85
At
(210) | | 71
Lu
174.97 | 103
Lr
(260) | | 9 | | 8
O
16.00 | 16
S
32.06 | 34
Se
78.96 | 52
Te
127.60 | 84 Po (210) | | 70
Yb
173.04 | 102
No
(259) | | w | | 7
N
14.01 | 15
P
30.97 | 33
As
74.92 | 51
Sb
121.75 | 83
Bi
208.98 | | 69
Tm
168.93 | 101
Md
(258) | | 4 | | 6
C
12.01 | 14
Si
28.09 | 32
Ge
72.59 | 50
Sn
118.69 | 82
Pb
207.19 | | 68
Er
167.26 | 100
Fm
(257) | | 3 | | 5
B
10.81 | 13
Al
26.98 | 31
Ga
69.72 | 49
In
114.82 | 81
TI
204.37 | | 67
Ho
164.93 | 99
Es | | | , | | | 30
Zn
65.37 | 48
Cd
112.40 | 80
Hg
200.59 | | 66
Dy
162.50 | 98
Cf
(251) | | əle | | | | 29
Cu
63.55 | 47
Ag
107.87 | 79
Au
196.97 | . / | 65
Tb
158.92 | 97
Bk
(247) | | The Periodic Table | | | | 28
Ni
58.71 | 46
Pd
106.42 | 78
Pt
195.09 | | 64
Gd
157.25 | 96
Cm
(247) | | Perio | | | | 27
Co
58.93 | 45
Rh
102.91 | 77
Ir
192.22 | | 63
Eu
151.96 | 95
Am
(243) | | The | | | 10 | 26
Fe
55.85 | 44 Ru 101.07 | 76
Os
190.21 | | 62
Sm
150.35 | 94 Pu (242) | | | 700 | | (5) | 25
Mn
54.94 | 43
Te
98.91 | 75
Re
186.21 | | 61
Pm
146.92 | 93
Np
(237) | | | Number | Element
omic Mass | | 24
Cr
52.00 | 42
Mo
95.94 | 74
W
183.85 | | 60
Nd
144.24 | 92
U
238.03 | | | Atomic Number | Element
Atomic Mass | | 23
V
50.94 | 41
Nb
92.91 | 73
Ta
180.95 | | 59
Pr
140.91 | 91
Pa
231.04 | | | 1 | | | 22
Ti
47.90 | 40
Zr
91.22 | 72
Hf
178.49 | | 58
Ce
140.12 | 90
Th
232.04 | | | | | | 21
Sc
44.96 | 39
Y
88.91 | 57 †
La
138.91 | 89 ‡ Ac (227) | + | ** | | 7 | | 4
Be
9.01 | 12
Mg
24.31 | 20
Ca
40.08 | 38
Sr
87.62 | 56
Ba
137.34 | 88
Ra
(226) | | | | 1 | 1
H
1.01 | 3
Li
6.94 | 11
Na
22.99 | 19
K
39.10 | 37
Rb
85.47 | 55
Cs
132.91 | 87
Fr
(223) | | | – 3 – - A. 120 - B. 130 - C. 138 - D. 246 2. Which is both an empirical and a molecular formula? - A. C₅H₁₂ - B. C₅H₁₀ - C. C₄H₈ - D. C₄H₁₀ $$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$ The following diagram represents the mixture of reactants. Key: Oxygen atom Hydrogen atom Which diagram represents the reaction mixture when the reaction was complete? A. B. C. D. - 4. Which describes the visible emission spectrum of hydrogen? - A. A series of lines converging at longer wavelength - B. A series of regularly spaced lines - C. A series of lines converging at lower energy - D. A series of lines converging at higher frequency - 5. The graph represents the energy needed to remove nine electrons, one at a time, from an atom of an element. Not all of the electrons have been removed. Which element could this be? - A. C - B. Si - C. P - D. S - 6. An ion has the electron configuration $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$. Which ion could it be? - A. Ni²⁺ - B. Cu+ - C. Cu2+ - D. Co3+ - 7. Which statements about the periodic table are correct? - I. Elements in period 3 have similar chemical properties. - II. Elements in group 7 show a gradual change in physical properties. - III. The position of an element in period 3 is related to the number of electrons in the highest occupied energy level. - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 8. Which statements about period 3 are correct? - I. The oxides of the elements change from ionic to covalent across period 3. - II. The oxides of the elements change from basic to acidic across period 3. - III. First ionization energy of the elements increases linearly across period 3. - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - Which statements are correct for the complex ion [CuCl₄]²⁻? - I. The oxidation number of Cu in the complex ion is +2. - II. The coordination number of the copper ion is 4. - III. Chloride ions are behaving as ligands. - A. I and II only - B. I and III only - C. II and III only - D. I, II and III | 10. Which molecule has the shortest carbon-oxyg | en bond | l length? | |---|---------|-----------| |---|---------|-----------| - A. CH₃COOH - B. CH₃CH₂OH - C. CO₂ - D. CO - 11. Which pair of compounds is arranged in correct order of relative boiling points? | | Lower Boiling Point | Higher Boiling Point | |----|------------------------------------|---| | A. | CH ₃ OCH ₃ | CH ₃ CH ₂ OH | | В. | CH ₃ CHO | CH ₃ CH ₂ CH ₃ | | C. | CH ₃ CH ₂ OH | CH ₃ CHO | | D. | CH ₃ COOH | CH₃CH₂OH | ### 12. Which intermolecular forces exist between molecules of carbon monoxide, CO? - A. Hydrogen bonds and van der Waals' forces - B. Dipole-dipole attractions and van der Waals' forces - C. Van der Waals' forces only - D. Dipole-dipole attractions only | 13. | Which | statements | about C | s and π | bonds are | correct? | |-----|-------|------------|---------|---------|-----------|----------| | 1.0 | WILL | Statements | about | and h | DOMUS are | COLLECT: | - I. σ bonds result from the axial overlap of orbitals. - II. σ bonds only form from s orbitals. - III. π bonds result from the sideways overlap of parallel p orbitals. - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 14. In which substance does a carbon atom have sp² hybridization? - A. 2-methylbutan-1-ol - B. Propyne, CH₃CCH - C. C₆₀ fullerene - D. Diamond - 15. Which types of reaction are always exothermic? - I. Neutralization - II. Decomposition - III. Combustion - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 16. Which reaction has an enthalpy change equal to a standard enthalpy change of formation, ΔH_f^{Θ} ? All reactions occur at 298 K and 1.01×10^5 Pa. - A. $C_4H_8(g) + H_2O(g) \rightarrow C_4H_9OH(l)$ - B. $4CO_2(g) + 5H_2O(g) \rightarrow C_4H_9OH(l) + \frac{13}{2}O_2(g)$ - C. $4C(s) + 5H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_4H_9OH(l)$ - D. $8C(s) + 10H_2(g) + O_2(g) \rightarrow 2C_4H_9OH(l)$ - 17. Which process has an enthalpy change that represents the lattice enthalpy of sodium chloride? - A. $NaCl(s) \rightarrow Na^+(g) + Cl^-(g)$ - B. $\operatorname{NaCl}(s) \to \operatorname{Na}(s) + \frac{1}{2}\operatorname{Cl}_2(g)$ - C. $NaCl(g) \rightarrow Na^{+}(g) + Cl^{-}(g)$ - D. $NaCl(s) \rightarrow Na(s) + Cl(g)$ - 18. Which is the correct order of increasing magnitude of lattice enthalpy (lowest first)? - A. NaCl < KCl < MgS < MgO - B. MgO < MgS < KCl < NaCl - C. KCl < NaCl < MgS < MgO - D. MgO < NaCl < KCl < MgS $$Co(H_2O)_6^{2+}(aq) + 4Cl^-(aq) \rightleftharpoons CoCl_4^{2-}(aq) + 6H_2O(l)$$ - A. Measure the change in pH in a given time - B. Measure the change in mass in a given time - C. Use a colorimeter to measure the change in colour in a given time - D. Measure the change in volume of the solution in a given time - 20. Powdered manganese(IV) oxide, MnO₂(s), increases the rate of the decomposition reaction of hydrogen peroxide, H₂O₂(aq). Which statements about MnO₂ are correct? - I. The rate is independent of the particle size of MnO₂. - MnO₂ provides an alternative reaction pathway for the decomposition with a lower activation energy. - III. All the MnO₂ is present after the decomposition of the hydrogen peroxide is complete. - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 11 - Questions 21 and 22 refer to the following reaction. Sodium thiosulfate solution, Na₂S₂O₃(aq), and hydrochloric acid, HCl(aq), react spontaneously to produce solid sulfur, S(s), according to the equation below. $$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow S(s) + SO_2(aq) + H_2O(l)$$ A student experimentally determined the rate expression to be: rate = $$k [S_2O_3^{2}(aq)]^2$$ 21. Which graph is consistent with this information? 22. Which reaction could be the rate-determining step? A. $$S_2O_3^{2-}(aq) + H^+(aq) \rightarrow S_2O_2(aq) + OH^-(aq)$$ B. $$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow S_2O_2(aq) + H_2O(1)$$ C. $$S_2O_3^{2-}(aq) \rightarrow S(s) + SO_3^{2-}(aq)$$ D. $$2S_2O_3^{2-}(aq) \rightarrow S_4O_6^{4-}(aq)$$ 2210-6107 Turn over Visit www.shaalaa.com for more question papers. 23. Which statement is correct for a crystal of iron(II) sulfate in a state of equilibrium with a saturated solution of iron(II) sulfate? - A. The colour of the solution darkens as the crystal continues to dissolve. - B. The concentration of the iron(II) sulfate solution increases as the water evaporates. - C. The shape of the iron(II) sulfate crystal does not change. - D. The colour of the solution does not change but the shape of the crystal may change. - 24. Consider the equilibrium between methanol, CH₃OH(l), and methanol vapour, CH₃OH(g). $$CH_3OH(I) \rightleftharpoons CH_3OH(g)$$ What happens to the position of equilibrium and the value of K_c as the temperature decreases? | 10 | Position of equilibrium | Value of K _c | |-----|-------------------------|-------------------------| | | shifts to the left | decreases | | 200 | shifts to the left | increases | | | shifts to the right | decreases | | | shifts to the right | increases | - 25. Which statement about acids is correct? - A. A Brønsted-Lowry acid donates an electron pair. - A Lewis acid donates a proton. - C. A Brønsted-Lowry acid accepts a proton. - D. A Lewis acid accepts an electron pair. - 26. A student has equal volumes of 1.0 mol dm⁻³ sodium hydroxide and ammonia solutions. Which statement about the solutions is correct? - A. Sodium hydroxide has a lower electrical conductivity than ammonia. - B. Sodium hydroxide has a higher hydrogen ion concentration than ammonia. - C. Sodium hydroxide has a higher pH than ammonia. - D. Sodium hydroxide has a higher hydroxide ion concentration than ammonia. - 27. What is the K_b expression for the reaction of ethylamine with water? A. $$K_b = [CH_3CH_2NH_3^+][OH^-]$$ B. $$K_b = \frac{[CH_3CH_2NH_3^+][OH^-]}{[CH_3CH_2NH_2]}$$ C. $$K_b = \frac{[CH_3CH_2NH_3^+][H_2O]}{[CH_3CH_2NH_2]}$$ D. $$K_b = [CH_3CH_2NH_2][H_2O]$$ 28. When these 1.0 mol dm⁻³ acidic solutions are arranged in order of increasing strength (weakest first), what is the correct order? acid in solution X $$K_a = 1.74 \times 10^{-5}$$ mol dm⁻³ at 298 K acid in solution Y $K_a = 1.38 \times 10^{-3}$ mol dm⁻³ at 298 K acid in solution Z $K_a = 1.78 \times 10^{-5}$ mol dm⁻³ at 298 K $$A. \quad X < Z < Y$$ $$B, \quad X < Y < Z$$ $$D. \quad Y < X < Z$$ $$HIn (aq) \rightleftharpoons H^+(aq) + In^-(aq)$$ colour A colour B What is the effect on this acid-base indicator when sodium hydroxide solution is added to it? - A. Equilibrium shifts to the right and more of colour B is seen. - B. Equilibrium shifts to the left and more of colour B is seen. - C. Equilibrium shifts to the right and more of colour A is seen. - D. Equilibrium shifts to the left and more of colour A is seen. - 30. Consider the following reaction. $$2 FeSO_{4}(aq) + H_{2}O_{2}(aq) + H_{2}SO_{4}(aq) \rightarrow Fe_{2}(SO_{4})_{3}(aq) + 2H_{2}O(l)$$ Which species is the oxidizing agent and which is the reducing agent? | | Oxidizing agent | Reducing agent | |----|-------------------------------------|-------------------------------------| | A. | $H_2O_2(aq)$ | H ₂ SO ₄ (aq) | | B. | H ₂ O ₂ (aq) | FeSO ₄ (aq) | | C. | FeSO ₄ (aq) | H ₂ O ₂ (aq) | | D. | H ₂ SO ₄ (aq) | H ₂ O ₂ (aq) | -15- | | | | | | | 100000 | Sec. 1999 | | | |-----|-------------|---------|-----------|------|---------|--------|-----------|--------|------| | T | A 11C 11 | 521 | - T | 1 | 1 0 | 1 1 | 1 | C | | | 200 | A half-cell | with an | electrode | in a | 1 II mc | ol am | solution | OT IIS | ions | | | | | | | | | | | | - II. Connection to a standard hydrogen electrode. - III. A voltmeter between half-cells to measure potential difference. - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 32. What condition is necessary for the electroplating of silver, Ag, onto a steel spoon? - The spoon must be the positive electrode. - The silver electrode must be the negative electrode. - C. The spoon must be the negative electrode. - D. The electrolyte must be acidified. - 33. Which is the best definition of structural isomers? - A. Compounds which have atoms with the same atomic numbers but different mass numbers - B. Compounds which have the same general formula but differ by a CH, group - C. Compounds which have the same empirical formula but different molecular formulas - D. Compounds which have the same molecular formula but different arrangements of atoms 34. Which is the correct classification of these alcohols? | 1 | 2 | 3 | |-----------|-----------|-----------| | tertiary | secondary | primary | | tertiary | primary | secondary | | tertiary | tertiary | secondary | | secondary | primary | secondary | - 35. Which substances are possible products of the incomplete combustion of octane? - A. Carbon dioxide and hydrogen gas - B. Carbon monoxide and water vapour - C. Carbon monoxide and hydrogen gas - D. Methane and hydrogen gas 36. What is the IUPAC name of CH₃CH₂CONH₂? - A. Aminopropanal - B. Ethanamide - C. Propylamine - D. Propanamide - 37. What is the main organic product formed from the reaction of CH₃CH₂OH with CH₃CH₂CH₂COOH in the presence of an acid catalyst? - A. Ethyl butanoate - B. Butyl ethanoate - C. Ethyl propanoate - D. Propyl ethanoate - 38. What are some uses of esters? - I. Flavouring agents - II. Perfumes - III. Solvents - A. I and II only - B. I and III only - C. II and III only - D. I, II and III | 39. | How many | isomers ca | n exist | for a co | mpound | with the | molecular | formula | C,H,C1,? | 1 | |-----|----------|------------|---------|----------|--------|----------|-----------|---------|----------|---| |-----|----------|------------|---------|----------|--------|----------|-----------|---------|----------|---| - A. 1 - B. 2 - C. 3 - D. 4 - 40. Which experimental procedure is most likely to lead to a large systematic error? - A. Determining the concentration of an alkali by titration with a burette - B. Measuring the volume of a solution using a volumetric pipette - C. Determining the enthalpy change of neutralization in a beaker - D. Measuring the volume of a gas produced with a gas syringe ## **MARKSCHEME** May 2010 CHEMISTRY Higher Level Paper 1 2 pages #### -2- M10/4/CHEMI/HPM/ENG/TZ1/XX/M | 1. | _ <u>D</u> _ | 16. | <u>C</u> | 31. | _ <u>D</u> _ | 46. | | |-----|--------------|-----|--------------|-----|--------------|-----|--------------| | 2. | <u>A</u> | 17. | <u>A</u> | 32. | <u>C</u> | 47. | - | | 3. | _A_ | 18. | _ <u>C</u> _ | 33. | _ <u>D</u> _ | 48. | | | 4. | <u>D</u> | 19. | <u>C</u> | 34. | <u>B</u> | 49. | | | 5. | <u>B</u> | 20. | <u>_C</u> | 35. | <u>B</u> | 50. | | | 6. | <u>B</u> | 21. | <u>B</u> | 36. | <u>D</u> | 51. | <u>=</u> | | 7. | <u>C</u> | 22. | <u>D</u> | 37. | <u>A</u> | 52. | | | 8. | <u>A</u> | 23. | <u>D</u> | 38. | <u>D</u> | 53. | | | 9. | <u>D</u> | 24. | _A_ | 39. | C | 54. | | | 10. | <u>D</u> | 25. | <u>D</u> | 40. | <u>C</u> | 55. | - | | 11. | _A_ | 26. | <u>C</u> | 41. | | 56. | | | 12. | <u>B</u> | 27. | <u>B</u> | 42. | | 57. | - | | 13. | <u>B</u> | 28. | A | 43. | 15 | 58. | | | 14. | _ <u>C</u> _ | 29. | <u>A</u> | 44. | <u>//22_</u> | 59. | <u> </u> | | 15. | _B_ | 30. |) <u>B</u> | 45. | / | 60. | |